These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 31325510)

  • 1. Physiological, behavioral and environmental factors influence bifurcated circadian entrainment in mice.
    Walbeek TJ; Joye DAM; Mishra I; Gorman MR
    Physiol Behav; 2019 Oct; 210():112625. PubMed ID: 31325510
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dim nighttime illumination interacts with parametric effects of bright light to increase the stability of circadian rhythm bifurcation in hamsters.
    Evans JA; Elliott JA; Gorman MR
    Chronobiol Int; 2011 Jul; 28(6):488-96. PubMed ID: 21797777
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Entrainment of 2 subjective nights by daily light:dark:light:dark cycles in 3 rodent species.
    Gorman MR; Elliott JA
    J Biol Rhythms; 2003 Dec; 18(6):502-12. PubMed ID: 14667151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simple Lighting Manipulations Facilitate Behavioral Entrainment of Mice to 18-h Days.
    Walbeek TJ; Gorman MR
    J Biol Rhythms; 2017 Aug; 32(4):309-322. PubMed ID: 28770653
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of photoperiod and running wheel access on the entrainment of split circadian rhythms in hamsters.
    Rosenthal SL; Vakili MM; Evans JA; Elliott JA; Gorman MR
    BMC Neurosci; 2005 Jun; 6():41. PubMed ID: 15967036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extraordinary behavioral entrainment following circadian rhythm bifurcation in mice.
    Harrison EM; Walbeek TJ; Sun J; Johnson J; Poonawala Q; Gorman MR
    Sci Rep; 2016 Dec; 6():38479. PubMed ID: 27929128
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-parametric photic entrainment of Djungarian hamsters with different rhythmic phenotypes.
    Schöttner K; Hauer J; Weinert D
    Chronobiol Int; 2016; 33(5):506-19. PubMed ID: 27031879
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Circadian rhythm bifurcation induces flexible phase resetting by reducing circadian amplitude.
    Noguchi T; Harrison EM; Sun J; May D; Ng A; Welsh DK; Gorman MR
    Eur J Neurosci; 2020 Jun; 51(12):2329-2342. PubMed ID: 30044021
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Twice daily melatonin peaks in Siberian but not Syrian hamsters under 24 h light:dark:light:dark cycles.
    Raiewski EE; Elliott JA; Evans JA; Glickman GL; Gorman MR
    Chronobiol Int; 2012 Nov; 29(9):1206-15. PubMed ID: 23003567
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exceptional Entrainment of Circadian Activity Rhythms With Manipulations of Rhythm Waveform in Male Syrian Hamsters.
    Gorman MR; Elliott JA
    Yale J Biol Med; 2019 Jun; 92(2):187-199. PubMed ID: 31249479
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photoperiodic Requirements for Induction and Maintenance of Rhythm Bifurcation and Extraordinary Entrainment in Male Mice.
    Sun J; Joye DAM; Farkas AH; Gorman MR
    Clocks Sleep; 2019 Sep; 1(3):290-305. PubMed ID: 33089170
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phase angle difference alters coupling relations of functionally distinct circadian oscillators revealed by rhythm splitting.
    Gorman MR; Steele NA
    J Biol Rhythms; 2006 Jun; 21(3):195-205. PubMed ID: 16731659
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional similarity in relation to the external environment between circadian behavioral and melatonin rhythms in the subtropical Indian weaver bird.
    Singh J; Rani S; Kumar V
    Horm Behav; 2012 Apr; 61(4):527-34. PubMed ID: 22314320
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Restricted wheel access following a light cycle inversion slows re-entrainment without internal desynchrony as measured in Per2Luc mice.
    Castillo C; Molyneux P; Carlson R; Harrington ME
    Neuroscience; 2011 May; 182():169-76. PubMed ID: 21392557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of transient and continuous wheel running activity on the upper and lower limits of entrainment to light-dark cycles in female hamsters.
    Chiesa JJ; Díez-Noguera A; Cambras T
    Chronobiol Int; 2007; 24(2):215-34. PubMed ID: 17453844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phase shifts in circadian peripheral clocks caused by exercise are dependent on the feeding schedule in PER2::LUC mice.
    Sasaki H; Hattori Y; Ikeda Y; Kamagata M; Iwami S; Yasuda S; Shibata S
    Chronobiol Int; 2016; 33(7):849-62. PubMed ID: 27123825
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of chronic jet lag on the central and peripheral circadian clocks in CBA/N mice.
    Iwamoto A; Kawai M; Furuse M; Yasuo S
    Chronobiol Int; 2014 Mar; 31(2):189-98. PubMed ID: 24147659
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aging lengthens circadian period for wheel-running activity in C57BL mice.
    Possidente B; McEldowney S; Pabon A
    Physiol Behav; 1995 Mar; 57(3):575-9. PubMed ID: 7753897
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasticity of hamster circadian entrainment patterns depends on light intensity.
    Gorman MR; Elliott JA; Evans JA
    Chronobiol Int; 2003 Mar; 20(2):233-48. PubMed ID: 12723883
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid Adjustment of Circadian Clocks to Simulated Travel to Time Zones across the Globe.
    Harrison EM; Gorman MR
    J Biol Rhythms; 2015 Dec; 30(6):557-62. PubMed ID: 26275871
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.