BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 31325545)

  • 1. Glucosylation of flavonoids and flavonoid glycosides by mutant dextransucrase from Lactobacillus reuteri TMW 1.106.
    Klingel T; Hadamjetz M; Fischer A; Wefers D
    Carbohydr Res; 2019 Sep; 483():107741. PubMed ID: 31325545
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural characterization of mixed-linkage α-glucans produced by mutants of Lactobacillus reuteri TMW 1.106 dextransucrase.
    Münkel F; Fischer A; Wefers D
    Carbohydr Polym; 2020 Mar; 231():115697. PubMed ID: 31888841
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzymatic Synthesis and Characterization of Mono-, Oligo-, and Polyglucosylated Conjugates of Caffeic Acid and Gallic Acid.
    Klingel T; Bindereif B; Hadamjetz M; Fischer A; van der Schaaf US; Wefers D
    J Agric Food Chem; 2019 Nov; 67(47):13108-13118. PubMed ID: 31738546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catechol glucosides act as donor/acceptor substrates of glucansucrase enzymes of Lactobacillus reuteri.
    Te Poele EM; Valk V; Devlamynck T; van Leeuwen SS; Dijkhuizen L
    Appl Microbiol Biotechnol; 2017 Jun; 101(11):4495-4505. PubMed ID: 28258313
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of Lactobacillus curvatus TMW 1.624 dextransucrase and comparative characterization with Lactobacillus reuteri TMW 1.106 and Lactobacillus animalis TMW 1.971 dextransucrases.
    Rühmkorf C; Bork C; Mischnick P; Rübsam H; Becker T; Vogel RF
    Food Microbiol; 2013 May; 34(1):52-61. PubMed ID: 23498178
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glucansucrase (mutant) enzymes from Lactobacillus reuteri 180 efficiently transglucosylate Stevia component rebaudioside A, resulting in a superior taste.
    Te Poele EM; Devlamynck T; Jäger M; Gerwig GJ; Van de Walle D; Dewettinck K; Hirsch AKH; Kamerling JP; Soetaert W; Dijkhuizen L
    Sci Rep; 2018 Jan; 8(1):1516. PubMed ID: 29367749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural analysis of rebaudioside A derivatives obtained by Lactobacillus reuteri 180 glucansucrase-catalyzed trans-α-glucosylation.
    Gerwig GJ; Te Poele EM; Dijkhuizen L; Kamerling JP
    Carbohydr Res; 2017 Feb; 440-441():51-62. PubMed ID: 28231561
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flavanone and isoflavone glucosylation by non-Leloir glycosyltransferases.
    Overwin H; Wray V; Seeger M; Sepúlveda-Boza S; Hofer B
    J Biotechnol; 2016 Sep; 233():121-8. PubMed ID: 27374405
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biosynthesis of malonylated flavonoid glycosides on the basis of malonyltransferase activity in the petals of Clitoria ternatea.
    Kogawa K; Kazuma K; Kato N; Noda N; Suzuki M
    J Plant Physiol; 2007 Jul; 164(7):886-94. PubMed ID: 16887235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glucosylation of Catechol with the GTFA Glucansucrase Enzyme from Lactobacillus reuteri and Sucrose as Donor Substrate.
    te Poele EM; Grijpstra P; van Leeuwen SS; Dijkhuizen L
    Bioconjug Chem; 2016 Apr; 27(4):937-46. PubMed ID: 26898769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glucosylation of alpha-butyl- and alpha-octyl-D-glucopyranosides by dextransucrase and alternansucrase from Leuconostoc mesenteroides.
    Richard G; Morel S; Willemot RM; Monsan P; Remaud-Simeon M
    Carbohydr Res; 2003 Apr; 338(9):855-64. PubMed ID: 12681910
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Malonylated flavonol glycosides from the petals of Clitoria ternatea.
    Kazuma K; Noda N; Suzuki M
    Phytochemistry; 2003 Jan; 62(2):229-37. PubMed ID: 12482461
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The sugar moiety is a major determinant of the absorption of dietary flavonoid glycosides in man.
    Hollman PC; Bijsman MN; van Gameren Y; Cnossen EP; de Vries JH; Katan MB
    Free Radic Res; 1999 Dec; 31(6):569-73. PubMed ID: 10630681
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structure of β-glucosidase 1A from Thermotoga neapolitana and comparison of active site mutants for hydrolysis of flavonoid glucosides.
    Kulkarni TS; Khan S; Villagomez R; Mahmood T; Lindahl S; Logan DT; Linares-Pastén JA; Nordberg Karlsson E
    Proteins; 2017 May; 85(5):872-884. PubMed ID: 28142197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polyphenols of Egyptian Rosaceae plants--two new flavonoid glycosides from Sanguisorba minor Scop.
    el-Mousallamy AM
    Pharmazie; 2002 Oct; 57(10):702-4. PubMed ID: 12426953
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural characterization of glucosylated GOS derivatives synthesized by the Lactobacillus reuteri GtfA and Gtf180 glucansucrase enzymes.
    Pham HT; Dijkhuizen L; van Leeuwen SS
    Carbohydr Res; 2018 Dec; 470():57-63. PubMed ID: 30392564
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vasorelaxant activity of 7-β-O-glycosides biosynthesized from flavonoids.
    Penso J; Cordeiro KC; da Cunha CR; da Silva Castro PF; Martins DR; Lião LM; Rocha ML; de Oliveira V
    Eur J Pharmacol; 2014 Jun; 733():75-80. PubMed ID: 24704375
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of flavonoid 7-O-glucosyltransferase from Arabidopsis thaliana.
    Kim JH; Kim BG; Park Y; Ko JH; Lim CE; Lim J; Lim Y; Ahn JH
    Biosci Biotechnol Biochem; 2006 Jun; 70(6):1471-7. PubMed ID: 16794327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional characterization of sucrose phosphorylase and scrR, a regulator of sucrose metabolism in Lactobacillus reuteri.
    Teixeira JS; Abdi R; Su MS; Schwab C; Gänzle MG
    Food Microbiol; 2013 Dec; 36(2):432-9. PubMed ID: 24010626
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of flavonol 3-O-glycoside by UGT78D1.
    Ren G; Hou J; Fang Q; Sun H; Liu X; Zhang L; Wang PG
    Glycoconj J; 2012 Aug; 29(5-6):425-32. PubMed ID: 22767031
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.