These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
513 related articles for article (PubMed ID: 31325724)
1. MASP-1 of the complement system alters fibrinolytic behaviour of blood clots. Jenny L; Noser D; Larsen JB; Dobó J; Gál P; Pál G; Schroeder V Mol Immunol; 2019 Oct; 114():1-9. PubMed ID: 31325724 [TBL] [Abstract][Full Text] [Related]
2. MASP-1 of the complement system enhances clot formation in a microvascular whole blood flow model. Jenny L; Dobó J; Gál P; Pál G; Lam WA; Schroeder V PLoS One; 2018; 13(1):e0191292. PubMed ID: 29324883 [TBL] [Abstract][Full Text] [Related]
3. Effects of MASP-1 of the complement system on activation of coagulation factors and plasma clot formation. Hess K; Ajjan R; Phoenix F; Dobó J; Gál P; Schroeder V PLoS One; 2012; 7(4):e35690. PubMed ID: 22536427 [TBL] [Abstract][Full Text] [Related]
4. The lectin complement pathway serine proteases (MASPs) represent a possible crossroad between the coagulation and complement systems in thromboinflammation. Kozarcanin H; Lood C; Munthe-Fog L; Sandholm K; Hamad OA; Bengtsson AA; Skjoedt MO; Huber-Lang M; Garred P; Ekdahl KN; Nilsson B J Thromb Haemost; 2016 Mar; 14(3):531-45. PubMed ID: 26614707 [TBL] [Abstract][Full Text] [Related]
5. Mannose-binding lectin-associated serine protease-1 cleaves plasminogen and plasma fibronectin: prefers plasminogen over known fibrinogen substrate. Choudhary K; Patel PK; Are VN; Makde RD; Hajela K Blood Coagul Fibrinolysis; 2021 Oct; 32(7):504-512. PubMed ID: 34650023 [TBL] [Abstract][Full Text] [Related]
6. In vitro fibrin clot formation and fibrinolysis using heterozygous plasma fibrinogen from gammaAsn319, Asp320 deletion dysfibrinogen, Otsu I. Terasawa F; Kani S; Hongo M; Okumura N Thromb Res; 2006; 118(5):651-61. PubMed ID: 16412498 [TBL] [Abstract][Full Text] [Related]
7. Whole blood clots are more resistant to lysis than plasma clots--greater efficacy of rivaroxaban. Varin R; Mirshahi S; Mirshahi P; Klein C; Jamshedov J; Chidiac J; Perzborn E; Mirshahi M; Soria C; Soria J Thromb Res; 2013 Mar; 131(3):e100-9. PubMed ID: 23313382 [TBL] [Abstract][Full Text] [Related]
8. Fibrinolytic proteins in human bile accelerate lysis of plasma clots and induce breakdown of fibrin sealants. Boonstra EA; Adelmeijer J; Verkade HJ; de Boer MT; Porte RJ; Lisman T Ann Surg; 2012 Aug; 256(2):306-12. PubMed ID: 22797359 [TBL] [Abstract][Full Text] [Related]
9. The role of activated coagulation factor XII in overall clot stability and fibrinolysis. Konings J; Hoving LR; Ariëns RS; Hethershaw EL; Ninivaggi M; Hardy LJ; de Laat B; Ten Cate H; Philippou H; Govers-Riemslag JW Thromb Res; 2015 Aug; 136(2):474-80. PubMed ID: 26153047 [TBL] [Abstract][Full Text] [Related]
10. Biochemical and biophysical conditions for blood clot lysis. Sabovic M; Blinc A Pflugers Arch; 2000; 440(5 Suppl):R134-6. PubMed ID: 11005642 [TBL] [Abstract][Full Text] [Related]
11. Activation of mannan-binding lectin-associated serine proteases leads to generation of a fibrin clot. Gulla KC; Gupta K; Krarup A; Gal P; Schwaeble WJ; Sim RB; O'Connor CD; Hajela K Immunology; 2010 Apr; 129(4):482-95. PubMed ID: 20002787 [TBL] [Abstract][Full Text] [Related]
12. Complement inhibition can decrease the haemostatic response in a microvascular bleeding model at multiple levels. Golomingi M; Kohler J; Lamers C; Pouw RB; Ricklin D; Dobó J; Gál P; Pál G; Kiss B; Dopler A; Schmidt CQ; Hardy ET; Lam W; Schroeder V Front Immunol; 2023; 14():1226832. PubMed ID: 37771595 [TBL] [Abstract][Full Text] [Related]
13. MASP-1 of the complement system promotes clotting via prothrombin activation. Jenny L; Dobó J; Gál P; Schroeder V Mol Immunol; 2015 Jun; 65(2):398-405. PubMed ID: 25745807 [TBL] [Abstract][Full Text] [Related]
14. Complement lectin pathway components MBL and MASP-1 promote haemostasis upon vessel injury in a microvascular bleeding model. Golomingi M; Kohler J; Jenny L; Hardy ET; Dobó J; Gál P; Pál G; Kiss B; Lam WA; Schroeder V Front Immunol; 2022; 13():948190. PubMed ID: 36032172 [TBL] [Abstract][Full Text] [Related]
15. Rearrangements of the fibrin network and spatial distribution of fibrinolytic components during plasma clot lysis. Study with confocal microscopy. Sakharov DV; Nagelkerke JF; Rijken DC J Biol Chem; 1996 Jan; 271(4):2133-8. PubMed ID: 8567670 [TBL] [Abstract][Full Text] [Related]
16. Protein C and fibrinolysis: a link between coagulation and fibrinolysis. de Fouw NJ; Haverkate F; Bertina RM Adv Exp Med Biol; 1990; 281():235-43. PubMed ID: 2102614 [TBL] [Abstract][Full Text] [Related]
17. Biochemical and biophysical conditions for blood clot lysis. Šabovič M; Blinc A Pflugers Arch; 2000 Jan; 440(Suppl 1):R134-R136. PubMed ID: 28008511 [TBL] [Abstract][Full Text] [Related]
18. Cell-Free DNA Modulates Clot Structure and Impairs Fibrinolysis in Sepsis. Gould TJ; Vu TT; Stafford AR; Dwivedi DJ; Kim PY; Fox-Robichaud AE; Weitz JI; Liaw PC Arterioscler Thromb Vasc Biol; 2015 Dec; 35(12):2544-53. PubMed ID: 26494232 [TBL] [Abstract][Full Text] [Related]
19. Thyroid dysfunction and fibrin network structure: a mechanism for increased thrombotic risk in hyperthyroid individuals. Hooper JM; Stuijver DJ; Orme SM; van Zaane B; Hess K; Gerdes VE; Phoenix F; Rice P; Smith KA; Alzahrani SH; Standeven KF; Ajjan RA J Clin Endocrinol Metab; 2012 May; 97(5):1463-73. PubMed ID: 22378816 [TBL] [Abstract][Full Text] [Related]