These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

50 related articles for article (PubMed ID: 31325737)

  • 1. Measuring temporal response properties of auditory nerve fibers in cochlear implant recipients.
    Tabibi S; Kegel A; Lai WK; Bruce IC; Dillier N
    Hear Res; 2019 Sep; 380():187-196. PubMed ID: 31325737
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using Neural Response Telemetry to Monitor Physiological Responses to Acoustic Stimulation in Hybrid Cochlear Implant Users.
    Abbas PJ; Tejani VD; Scheperle RA; Brown CJ
    Ear Hear; 2017; 38(4):409-425. PubMed ID: 28085738
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ART and AutoART ECAP measurements and cochlear nerve anatomy as predictors in adult cochlear implant recipients.
    Schrank L; Nachtigäller P; Müller J; Hempel JM; Canis M; Spiegel JL; Rader T
    Eur Arch Otorhinolaryngol; 2024 Jul; 281(7):3461-3473. PubMed ID: 38219245
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peripheral and Central Contributions to Cortical Responses in Cochlear Implant Users.
    Scheperle RA; Abbas PJ
    Ear Hear; 2015; 36(4):430-40. PubMed ID: 25658747
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Across-site patterns of electrically evoked compound action potential amplitude-growth functions in multichannel cochlear implant recipients and the effects of the interphase gap.
    Schvartz-Leyzac KC; Pfingst BE
    Hear Res; 2016 Nov; 341():50-65. PubMed ID: 27521841
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of Aging and the Electrode-to-Neural Interface on Temporal Processing Ability in Cochlear-Implant Users: Gap Detection Thresholds.
    Shader MJ; Gordon-Salant S; Goupell MJ
    Trends Hear; 2020; 24():2331216520956560. PubMed ID: 32941111
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrophysiological assessment of temporal envelope processing in cochlear implant users.
    Gransier R; Carlyon RP; Wouters J
    Sci Rep; 2020 Sep; 10(1):15406. PubMed ID: 32958791
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlation between neural response telemetry measurements and fitting levels.
    Ries M; Kelava I; Ajduk J; Košec A; Žaja R; Trotić R
    Int J Pediatr Otorhinolaryngol; 2024 Jun; 182():112001. PubMed ID: 38885546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrically evoked compound action potential polarity sensitivity, refractory-recovery, and behavioral multi-pulse integration as potential indices of neural health in cochlear-implant recipients.
    Hughes ML
    Hear Res; 2023 Jun; 433():108764. PubMed ID: 37062161
    [No Abstract]   [Full Text] [Related]  

  • 10. A Computational Model of the Electrically or Acoustically Evoked Compound Action Potential in Cochlear Implant Users with Residual Hearing.
    Kipping D; Zhang Y; Nogueira W
    IEEE Trans Biomed Eng; 2024 Jun; PP():. PubMed ID: 38843064
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Auditory enhancement and the role of spectral resolution in normal-hearing listeners and cochlear-implant users.
    Feng L; Oxenham AJ
    J Acoust Soc Am; 2018 Aug; 144(2):552. PubMed ID: 30180692
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analyzing the FFR: A tutorial for decoding the richness of auditory function.
    Krizman J; Kraus N
    Hear Res; 2019 Oct; 382():107779. PubMed ID: 31505395
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neural Recovery Function of the Auditory Nerve in Cochlear Implant Surgery: Comparison between Prelingual and Postlingual Patients.
    Carvalho B; Wiemes GRM; Patrial Netto L; Hamerschmidt R
    Int Arch Otorhinolaryngol; 2020 Oct; 24(4):e444-e449. PubMed ID: 33101509
    [No Abstract]   [Full Text] [Related]  

  • 14. The Electrically Evoked Compound Action Potential: From Laboratory to Clinic.
    He S; Teagle HFB; Buchman CA
    Front Neurosci; 2017; 11():339. PubMed ID: 28690494
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tinnitus and equilibrium disorders in COVID-19 patients: preliminary results.
    Viola P; Ralli M; Pisani D; Malanga D; Sculco D; Messina L; Laria C; Aragona T; Leopardi G; Ursini F; Scarpa A; Topazio D; Cama A; Vespertini V; Quintieri F; Cosco L; Cunsolo EM; Chiarella G
    Eur Arch Otorhinolaryngol; 2021 Oct; 278(10):3725-3730. PubMed ID: 33095432
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Misophonia: Phenomenology, comorbidity and demographics in a large sample.
    Jager I; de Koning P; Bost T; Denys D; Vulink N
    PLoS One; 2020; 15(4):e0231390. PubMed ID: 32294104
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of Temporomandibular Joint Complaints on Tinnitus-Related Distress.
    Edvall NK; Gunan E; Genitsaridi E; Lazar A; Mehraei G; Billing M; Tullberg M; Bulla J; Whitton J; Canlon B; Hall DA; Cederroth CR
    Front Neurosci; 2019; 13():879. PubMed ID: 31548840
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new method for removing artifacts from recordings of the electrically evoked compound action potential: Single-pulse stimulation.
    Skidmore J; Yuan Y; He S
    medRxiv; 2024 Jan; ():. PubMed ID: 38293121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrical Field Interactions during Adjacent Electrode Stimulations: eABR Evaluation in Cochlear Implant Users.
    Guevara N; Truy E; Hoen M; Hermann R; Vandersteen C; Gallego S
    J Clin Med; 2023 Jan; 12(2):. PubMed ID: 36675534
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of response properties of the electrically stimulated auditory nerve reported in human listeners and in animal models.
    Skidmore J; Ramekers D; Bruce IC; He S
    Hear Res; 2022 Dec; 426():108643. PubMed ID: 36343534
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.