These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 31325779)
1. Rice based distillers dried grains with solubles as a low cost substrate for the production of a novel rhamnolipid biosurfactant having anti-biofilm activity against Candida tropicalis. Borah SN; Sen S; Goswami L; Bora A; Pakshirajan K; Deka S Colloids Surf B Biointerfaces; 2019 Oct; 182():110358. PubMed ID: 31325779 [TBL] [Abstract][Full Text] [Related]
2. Antifungal properties of rhamnolipid produced by Pseudomonas aeruginosa DS9 against Colletotrichum falcatum. Goswami D; Borah SN; Lahkar J; Handique PJ; Deka S J Basic Microbiol; 2015 Nov; 55(11):1265-74. PubMed ID: 26173581 [TBL] [Abstract][Full Text] [Related]
3. Rapid and solitary production of mono-rhamnolipid biosurfactant and biofilm inhibiting pyocyanin by a taxonomic outlier Pseudomonas aeruginosa strain CR1. Sood U; Singh DN; Hira P; Lee JK; Kalia VC; Lal R; Shakarad M J Biotechnol; 2020 Jan; 307():98-106. PubMed ID: 31705932 [TBL] [Abstract][Full Text] [Related]
4. Utilization of mango kernel oil for the rhamnolipid production by Pseudomonas aeruginosa DR1 towards its application as biocontrol agent. Sathi Reddy K; Yahya Khan M; Archana K; Gopal Reddy M; Hameeda B Bioresour Technol; 2016 Dec; 221():291-299. PubMed ID: 27643738 [TBL] [Abstract][Full Text] [Related]
5. Production and characterization of rhamnolipid biosurfactant from waste frying coconut oil using a novel Pseudomonas aeruginosa D. George S; Jayachandran K J Appl Microbiol; 2013 Feb; 114(2):373-83. PubMed ID: 23164038 [TBL] [Abstract][Full Text] [Related]
6. Candida biofilm disrupting ability of di-rhamnolipid (RL-2) produced from Pseudomonas aeruginosa DSVP20. Singh N; Pemmaraju SC; Pruthi PA; Cameotra SS; Pruthi V Appl Biochem Biotechnol; 2013 Apr; 169(8):2374-91. PubMed ID: 23446981 [TBL] [Abstract][Full Text] [Related]
7. Production and physico-chemical characterization of a biosurfactant produced by Pseudomonas aeruginosa OBP1 isolated from petroleum sludge. Bharali P; Konwar BK Appl Biochem Biotechnol; 2011 Aug; 164(8):1444-60. PubMed ID: 21468636 [TBL] [Abstract][Full Text] [Related]
8. Pseudomonas sp. BUP6, a novel isolate from Malabari goat produces an efficient rhamnolipid type biosurfactant. Priji P; Sajith S; Unni KN; Anderson RC; Benjamin S J Basic Microbiol; 2017 Jan; 57(1):21-33. PubMed ID: 27400277 [TBL] [Abstract][Full Text] [Related]
9. Utilization of Paneer Whey Waste for Cost-Effective Production of Rhamnolipid Biosurfactant. Patowary R; Patowary K; Kalita MC; Deka S Appl Biochem Biotechnol; 2016 Oct; 180(3):383-399. PubMed ID: 27142272 [TBL] [Abstract][Full Text] [Related]
10. Production and characterization of glycolipid biosurfactant from Achromobacter sp. (PS1) isolate using one-factor-at-a-time (OFAT) approach with feasible utilization of ammonia-soaked lignocellulosic pretreated residues. Joy S; Rahman PKSM; Khare SK; Sharma S Bioprocess Biosyst Eng; 2019 Aug; 42(8):1301-1315. PubMed ID: 31028463 [TBL] [Abstract][Full Text] [Related]
11. Bioconversion of agro-industrial by-products in rhamnolipids toward applications in enhanced oil recovery and bioremediation. Gudiña EJ; Rodrigues AI; Alves E; Domingues MR; Teixeira JA; Rodrigues LR Bioresour Technol; 2015 Feb; 177():87-93. PubMed ID: 25479398 [TBL] [Abstract][Full Text] [Related]
12. Antibiofilm and wound healing efficacy of rhamnolipid biosurfactant against pathogenic bacterium Staphylococcus aureus. Malakar C; Kashyap B; Bhattacharjee S; Chandra Kalita M; Mukherjee AK; Deka S Microb Pathog; 2024 Oct; 195():106855. PubMed ID: 39151739 [TBL] [Abstract][Full Text] [Related]
13. Synthesis, characterization, and oil recovery application of biosurfactant produced by indigenous pseudomonas aeruginosa WJ-1 using waste vegetable oils. Xia WJ; Luo ZB; Dong HP; Yu L; Cui QF; Bi YQ Appl Biochem Biotechnol; 2012 Mar; 166(5):1148-66. PubMed ID: 22198867 [TBL] [Abstract][Full Text] [Related]
14. Production and characterization of rhamnolipid using palm oil agricultural refinery waste. Radzuan MN; Banat IM; Winterburn J Bioresour Technol; 2017 Feb; 225():99-105. PubMed ID: 27888734 [TBL] [Abstract][Full Text] [Related]
15. Production of microbial rhamnolipid by Pseudomonas aeruginosa MM1011 for ex situ enhanced oil recovery. Amani H; Müller MM; Syldatk C; Hausmann R Appl Biochem Biotechnol; 2013 Jul; 170(5):1080-93. PubMed ID: 23640261 [TBL] [Abstract][Full Text] [Related]
16. Chemical structure, surface properties and biological activities of the biosurfactant produced by Pseudomonas aeruginosa LBI from soapstock. Benincasa M; Abalos A; Oliveira I; Manresa A Antonie Van Leeuwenhoek; 2004 Jan; 85(1):1-8. PubMed ID: 15028876 [TBL] [Abstract][Full Text] [Related]
17. Physicochemical characterization and antimicrobial properties of rhamnolipids produced by Pseudomonas aeruginosa 47T2 NCBIM 40044. Haba E; Pinazo A; Jauregui O; Espuny MJ; Infante MR; Manresa A Biotechnol Bioeng; 2003 Feb; 81(3):316-22. PubMed ID: 12474254 [TBL] [Abstract][Full Text] [Related]
18. Characterization of rhamnolipid produced by Pseudomonas aeruginosa isolate Bs20. Abdel-Mawgoud AM; Aboulwafa MM; Hassouna NA Appl Biochem Biotechnol; 2009 May; 157(2):329-45. PubMed ID: 18584127 [TBL] [Abstract][Full Text] [Related]
19. Stimulatory effects of biosurfactant produced by Pseudomonas aeruginosa BSZ-07 on rice straw decomposing. Zhang Q; Cai W; Wang J J Environ Sci (China); 2008; 20(8):975-80. PubMed ID: 18817078 [TBL] [Abstract][Full Text] [Related]
20. Structural characterization of a rhamnolipid-type biosurfactant produced by Pseudomonas aeruginosa MR01: enhancement of di-rhamnolipid proportion using gamma irradiation. Lotfabad TB; Abassi H; Ahmadkhaniha R; Roostaazad R; Masoomi F; Zahiri HS; Ahmadian G; Vali H; Noghabi KA Colloids Surf B Biointerfaces; 2010 Dec; 81(2):397-405. PubMed ID: 20732795 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]