These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 31325786)
21. C-aryl glucosides substituted at the 4'-position as potent and selective renal sodium-dependent glucose co-transporter 2 (SGLT2) inhibitors for the treatment of type 2 diabetes. Xu B; Feng Y; Cheng H; Song Y; Lv B; Wu Y; Wang C; Li S; Xu M; Du J; Peng K; Dong J; Zhang W; Zhang T; Zhu L; Ding H; Sheng Z; Welihinda A; Roberge JY; Seed B; Chen Y Bioorg Med Chem Lett; 2011 Aug; 21(15):4465-70. PubMed ID: 21737266 [TBL] [Abstract][Full Text] [Related]
22. Synthesis and biological evaluation of novel C-aryl d-glucofuranosides as sodium-dependent glucose co-transporter 2 inhibitors. Lin TS; Liw YW; Song JS; Hsieh TC; Yeh HW; Hsu LC; Lin CJ; Wu SH; Liang PH Bioorg Med Chem; 2013 Nov; 21(21):6282-91. PubMed ID: 24071445 [TBL] [Abstract][Full Text] [Related]
23. Tofogliflozin, a selective inhibitor of sodium-glucose cotransporter 2, suppresses renal damage in KKAy/Ta mice, obese and type 2 diabetic animals. Ishibashi Y; Matsui T; Yamagishi SI Diab Vasc Dis Res; 2016 Nov; 13(6):438-441. PubMed ID: 27407083 [TBL] [Abstract][Full Text] [Related]
24. Sergliflozin, a novel selective inhibitor of low-affinity sodium glucose cotransporter (SGLT2), validates the critical role of SGLT2 in renal glucose reabsorption and modulates plasma glucose level. Katsuno K; Fujimori Y; Takemura Y; Hiratochi M; Itoh F; Komatsu Y; Fujikura H; Isaji M J Pharmacol Exp Ther; 2007 Jan; 320(1):323-30. PubMed ID: 17050778 [TBL] [Abstract][Full Text] [Related]
25. Discovery of remogliflozin etabonate: A potent and highly selective SGLT2 inhibitor. Shimizu K; Fujikura H; Fushimi N; Nishimura T; Tatani K; Katsuno K; Fujimori Y; Watanabe S; Hiratochi M; Nakabayashi T; Kamada N; Arakawa K; Hikawa H; Azumaya I; Isaji M Bioorg Med Chem; 2021 Mar; 34():116033. PubMed ID: 33581390 [TBL] [Abstract][Full Text] [Related]
26. Remogliflozin etabonate, in a novel category of selective low-affinity sodium glucose cotransporter (SGLT2) inhibitors, exhibits antidiabetic efficacy in rodent models. Fujimori Y; Katsuno K; Nakashima I; Ishikawa-Takemura Y; Fujikura H; Isaji M J Pharmacol Exp Ther; 2008 Oct; 327(1):268-76. PubMed ID: 18583547 [TBL] [Abstract][Full Text] [Related]
27. Synthesis and biological evaluation of C-glucosides with azulene rings as selective SGLT2 inhibitors for the treatment of type 2 diabetes mellitus: discovery of YM543. Ikegai K; Imamura M; Suzuki T; Nakanishi K; Murakami T; Kurosaki E; Noda A; Kobayashi Y; Yokota M; Koide T; Kosakai K; Ohkura Y; Takeuchi M; Tomiyama H; Ohta M Bioorg Med Chem; 2013 Jul; 21(13):3934-48. PubMed ID: 23651509 [TBL] [Abstract][Full Text] [Related]
28. The Effect of Sodium-Dependent Glucose Cotransporter 2 Inhibitor Tofogliflozin on Neurovascular Coupling in the Retina in Type 2 Diabetic Mice. Hanaguri J; Yokota H; Kushiyama A; Kushiyama S; Watanabe M; Yamagami S; Nagaoka T Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163285 [TBL] [Abstract][Full Text] [Related]
29. SGLT2 inhibitors, an accomplished development in field of medicinal chemistry: an extensive review. Manoj A; Das S; Kunnath Ramachandran A; Alex AT; Joseph A Future Med Chem; 2020 Nov; 12(21):1961-1990. PubMed ID: 33124462 [TBL] [Abstract][Full Text] [Related]
30. Glycemic control by the SGLT2 inhibitor empagliflozin decreases aortic stiffness, renal resistivity index and kidney injury. Aroor AR; Das NA; Carpenter AJ; Habibi J; Jia G; Ramirez-Perez FI; Martinez-Lemus L; Manrique-Acevedo CM; Hayden MR; Duta C; Nistala R; Mayoux E; Padilla J; Chandrasekar B; DeMarco VG Cardiovasc Diabetol; 2018 Jul; 17(1):108. PubMed ID: 30060748 [TBL] [Abstract][Full Text] [Related]
31. Design, synthesis and biological evaluation of (2S,3R,4R,5S,6R)-5-fluoro-6-(hydroxymethyl)-2-aryltetrahydro-2H-pyran-3,4-diols as potent and orally active SGLT dual inhibitors. Xu G; Gaul MD; Kuo GH; Du F; Xu JZ; Wallace N; Hinke S; Kirchner T; Silva J; Huebert ND; Lee S; Murray W; Liang Y; Demarest K Bioorg Med Chem Lett; 2018 Nov; 28(21):3446-3453. PubMed ID: 30268701 [TBL] [Abstract][Full Text] [Related]
32. Synthesis and biological evaluation of novel tetrahydroisoquinoline-C-aryl glucosides as SGLT2 inhibitors for the treatment of type 2 diabetes. Pan X; Huan Y; Shen Z; Liu Z Eur J Med Chem; 2016 May; 114():89-100. PubMed ID: 26974378 [TBL] [Abstract][Full Text] [Related]
33. Central administration of sodium-glucose cotransporter-2 inhibitors increases food intake involving adenosine monophosphate-activated protein kinase phosphorylation in the lateral hypothalamus in healthy rats. Takeda K; Ono H; Ishikawa K; Ohno T; Kumagai J; Ochiai H; Matumoto A; Yokoh H; Maezawa Y; Yokote K BMJ Open Diabetes Res Care; 2021 Apr; 9(1):. PubMed ID: 33879516 [TBL] [Abstract][Full Text] [Related]
34. Novel C-aryl glucoside SGLT2 inhibitors as potential antidiabetic agents: 1,3,4-Thiadiazolylmethylphenyl glucoside congeners. Lee J; Lee SH; Seo HJ; Son EJ; Lee SH; Jung ME; Lee M; Han HK; Kim J; Kang J; Lee J Bioorg Med Chem; 2010 Mar; 18(6):2178-2194. PubMed ID: 20181486 [TBL] [Abstract][Full Text] [Related]
35. Selective SGLT2 inhibition by tofogliflozin reduces renal glucose reabsorption under hyperglycemic but not under hypo- or euglycemic conditions in rats. Nagata T; Fukazawa M; Honda K; Yata T; Kawai M; Yamane M; Murao N; Yamaguchi K; Kato M; Mitsui T; Suzuki Y; Ikeda S; Kawabe Y Am J Physiol Endocrinol Metab; 2013 Feb; 304(4):E414-23. PubMed ID: 23249697 [TBL] [Abstract][Full Text] [Related]
36. Cardiac ischemia-reperfusion injury under insulin-resistant conditions: SGLT1 but not SGLT2 plays a compensatory protective role in diet-induced obesity. Yoshii A; Nagoshi T; Kashiwagi Y; Kimura H; Tanaka Y; Oi Y; Ito K; Yoshino T; Tanaka TD; Yoshimura M Cardiovasc Diabetol; 2019 Jul; 18(1):85. PubMed ID: 31262297 [TBL] [Abstract][Full Text] [Related]
37. Organic anion transporter OAT3 enhances the glucosuric effect of the SGLT2 inhibitor empagliflozin. Fu Y; Breljak D; Onishi A; Batz F; Patel R; Huang W; Song P; Freeman B; Mayoux E; Koepsell H; Anzai N; Nigam SK; Sabolic I; Vallon V Am J Physiol Renal Physiol; 2018 Aug; 315(2):F386-F394. PubMed ID: 29412698 [TBL] [Abstract][Full Text] [Related]
38. In vitro-in vivo correlation of the inhibition potency of sodium-glucose cotransporter inhibitors in rat: a pharmacokinetic and pharmacodynamic modeling approach. Yamaguchi K; Kato M; Suzuki M; Hagita H; Takada M; Ayabe M; Aso Y; Ishigai M; Ikeda S J Pharmacol Exp Ther; 2013 Apr; 345(1):52-61. PubMed ID: 23386251 [TBL] [Abstract][Full Text] [Related]
39. Structural selectivity of human SGLT inhibitors. Hummel CS; Lu C; Liu J; Ghezzi C; Hirayama BA; Loo DD; Kepe V; Barrio JR; Wright EM Am J Physiol Cell Physiol; 2012 Jan; 302(2):C373-82. PubMed ID: 21940664 [TBL] [Abstract][Full Text] [Related]
40. 5,5-Difluoro- and 5-Fluoro-5-methyl-hexose-based C-Glucosides as potent and orally bioavailable SGLT1 and SGLT2 dual inhibitors. Xu G; Du F; Kuo GH; Xu JZ; Liang Y; Demarest K; Gaul MD Bioorg Med Chem Lett; 2020 Sep; 30(17):127387. PubMed ID: 32738984 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]