BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 31325869)

  • 1. Enhanced electrochemical performances of peanut shell derived activated carbon and its Fe
    Bharath G; Rambabu K; Banat F; Hai A; Arangadi AF; Ponpandian N
    Sci Total Environ; 2019 Nov; 691():713-726. PubMed ID: 31325869
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective removal of toxic Cr(VI) from aqueous solution by adsorption combined with reduction at a magnetic nanocomposite surface.
    Kera NH; Bhaumik M; Pillay K; Ray SS; Maity A
    J Colloid Interface Sci; 2017 Oct; 503():214-228. PubMed ID: 28527339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Designed assembly of Ni/MAX (Ti
    Bharath G; Hai A; Rambabu K; Pazhanivel T; Hasan SW; Banat F
    Chemosphere; 2021 Mar; 266():129048. PubMed ID: 33248725
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electro-oxidation of heavy metals contaminated water using banana waste-derived activated carbon and Fe
    Alagarasan JK; Shasikala S; Rene ER; Bhatt P; Thangavelu P; Madheswaran P; Subramanian S; Nguyen DD; Chang SW; Lee M
    Environ Res; 2022 Dec; 215(Pt 2):114293. PubMed ID: 36155152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring the electrosorption selectivity and recovery of indium ions with capacitive deionization in acidic solution.
    Shen YY; Wu SW; Hou CH
    J Colloid Interface Sci; 2021 Mar; 586():819-829. PubMed ID: 33198978
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal of heavy metal ions by capacitive deionization: Effect of surface modification on ions adsorption.
    Kyaw HH; Myint MTZ; Al-Harthi S; Al-Abri M
    J Hazard Mater; 2020 Mar; 385():121565. PubMed ID: 31732340
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ZnCl
    Wu S; Yan P; Yang W; Zhou J; Wang H; Che L; Zhu P
    Chemosphere; 2021 Feb; 264(Pt 2):128557. PubMed ID: 33049504
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electro-removal of arsenic(III) and arsenic(V) from aqueous solutions by capacitive deionization.
    Fan CS; Tseng SC; Li KC; Hou CH
    J Hazard Mater; 2016 Jul; 312():208-215. PubMed ID: 27037475
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hybrid capacitive deionization of NaCl and toxic heavy metal ions using faradic electrodes of silver nanospheres decorated pomegranate peel-derived activated carbon.
    Bharath G; Hai A; Rambabu K; Ahmed F; Haidyrah AS; Ahmad N; Hasan SW; Banat F
    Environ Res; 2021 Jun; 197():111110. PubMed ID: 33864793
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent progress in materials and architectures for capacitive deionization: A comprehensive review.
    Datar SD; Mane R; Jha N
    Water Environ Res; 2022 Mar; 94(3):e10696. PubMed ID: 35289462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. One-pot synthesis of magnetic iron oxide nanoparticle-multiwalled carbon nanotube composites for enhanced removal of Cr(VI) from aqueous solution.
    Lu W; Li J; Sheng Y; Zhang X; You J; Chen L
    J Colloid Interface Sci; 2017 Nov; 505():1134-1146. PubMed ID: 28709373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional honeycomb-like porous carbon derived from corncob for the removal of heavy metals from water by capacitive deionization.
    Zhang XF; Wang B; Yu J; Wu XN; Zang YH; Gao HC; Su PC; Hao SQ
    RSC Adv; 2018 Jan; 8(3):1159-1167. PubMed ID: 35540903
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electro-enhanced removal of copper ions from aqueous solutions by capacitive deionization.
    Huang SY; Fan CS; Hou CH
    J Hazard Mater; 2014 Aug; 278():8-15. PubMed ID: 24937658
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel graphene-like electrodes for capacitive deionization.
    Li H; Zou L; Pan L; Sun Z
    Environ Sci Technol; 2010 Nov; 44(22):8692-7. PubMed ID: 20964326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acid treated RHWBAC electrode performance for Cr(VI) removal by capacitive deionization and CFD analysis study.
    Gaikwad MS; Balomajumder C; Tiwari AK
    Chemosphere; 2020 Sep; 254():126781. PubMed ID: 32335438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Facile synthesis of TiO
    Yasin AS; Mohamed IMA; Mousa HM; Park CH; Kim CS
    Sci Rep; 2018 Jan; 8(1):541. PubMed ID: 29323229
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Capacitive deionization of high concentrations of hexavalent chromium using nickel-ferric-layered double hydroxide/molybdenum disulfide asymmetric electrode.
    Yang D; Li X; Li Y; Song W; Yan T; Cui Y; Yan L
    J Colloid Interface Sci; 2023 Mar; 634():793-803. PubMed ID: 36565621
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring the impact of pore size distribution on the performance of carbon electrodes for capacitive deionization.
    Han L; Karthikeyan KG; Anderson MA; Gregory KB
    J Colloid Interface Sci; 2014 Sep; 430():93-9. PubMed ID: 24998059
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of the Adsorption Process of Chromium (VI) Ions from Petrochemical Wastewater Using Nanomagnetic Carbon Materials.
    Long W; Chen Z; Chen X; Zhong Z
    Nanomaterials (Basel); 2022 Oct; 12(21):. PubMed ID: 36364591
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly Efficient Adsorption and Reduction of Cr(VI) Ions by a Core-Shell Fe
    Li L; Xu Y; Zhong D
    J Phys Chem A; 2020 Apr; 124(14):2854-2862. PubMed ID: 32202105
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.