These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 31325937)

  • 1. The origin of the conductivity maximum in molten salts. III. Zinc halides.
    Aravindakshan NP; Johnson KE; East ALL
    J Chem Phys; 2019 Jul; 151(3):034507. PubMed ID: 31325937
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The origin of the conductivity maximum in molten salts. II. SnCl2 and HgBr2.
    Aravindakshan NP; Kuntz CM; Gemmell KE; Johnson KE; East AL
    J Chem Phys; 2016 Sep; 145(9):094504. PubMed ID: 27609001
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the Use of the Angell-Walden Equation To Determine the "Ionicity" of Molten Salts and Ionic Liquids.
    Harris KR
    J Phys Chem B; 2019 Aug; 123(32):7014-7023. PubMed ID: 31318219
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the preparation of coordination polymers by controlled thermal decomposition: synthesis, crystal structures, and thermal properties of zinc halide pyrazine coordination compounds.
    Bhosekar G; Jess I; Näther C
    Inorg Chem; 2006 Aug; 45(16):6508-15. PubMed ID: 16878965
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The origin of the conductivity maximum in molten salts. I. Bismuth chloride.
    Clay AT; Kuntz CM; Johnson KE; East AL
    J Chem Phys; 2012 Mar; 136(12):124504. PubMed ID: 22462871
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of ZnCl
    Lucas P; Coleman GJ; Venkateswara Rao M; Edwards AN; Devaadithya C; Wei S; Alsayoud AQ; Potter BG; Muralidharan K; Deymier PA
    J Phys Chem B; 2017 Dec; 121(49):11210-11218. PubMed ID: 29166015
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molten alkali halides - temperature dependence of structure, dynamics and thermodynamics.
    Walz MM; van der Spoel D
    Phys Chem Chem Phys; 2019 Aug; 21(34):18516-18524. PubMed ID: 31414083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular dynamics simulations of the local structures and transport coefficients of molten alkali chlorides.
    Wang J; Sun Z; Lu G; Yu J
    J Phys Chem B; 2014 Aug; 118(34):10196-206. PubMed ID: 25105467
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal conductivity of molten alkali halides: Temperature and density dependence.
    Ohtori N; Oono T; Takase K
    J Chem Phys; 2009 Jan; 130(4):044505. PubMed ID: 19191396
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atomistic simulations of molten carbonates: Thermodynamic and transport properties of the Li
    Desmaele E; Sator N; Vuilleumier R; Guillot B
    J Chem Phys; 2019 Mar; 150(9):094504. PubMed ID: 30849908
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermodynamic and Transport Properties of LiF and FLiBe Molten Salts with Deep Learning Potentials.
    Rodriguez A; Lam S; Hu M
    ACS Appl Mater Interfaces; 2021 Nov; 13(46):55367-55379. PubMed ID: 34767334
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure of ZnCl2 Melt. Part I: Raman Spectroscopy Analysis Driven by Ab Initio Methods.
    Alsayoud AQ; Venkateswara Rao M; Edwards AN; Deymier PA; Muralidharan K; Potter BG; Runge K; Lucas P
    J Phys Chem B; 2016 May; 120(17):4174-81. PubMed ID: 27070739
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heat capacity of molten halides.
    Redkin AA; Zaikov YP; Korzun IV; Reznitskikh OG; Yaroslavtseva TV; Kumkov SI
    J Phys Chem B; 2015 Jan; 119(2):509-12. PubMed ID: 25530462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cation and anion dependence of stable geometries and stabilization energies of alkali metal cation complexes with FSA(-), FTA(-), and TFSA(-) anions: relationship with physicochemical properties of molten salts.
    Tsuzuki S; Kubota K; Matsumoto H
    J Phys Chem B; 2013 Dec; 117(50):16212-8. PubMed ID: 24283848
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular dynamics determination of liquid-vapor coexistence in molten alkali halides.
    Abramo MC; Costa D; Malescio G; Munaò G; Pellicane G; Prestipino S; Caccamo C
    Phys Rev E; 2018 Jul; 98(1-1):010103. PubMed ID: 30110854
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlled Reduction of Carboxamides to Alcohols or Amines by Zinc Hydrides.
    Ong DY; Yen Z; Yoshii A; Revillo Imbernon J; Takita R; Chiba S
    Angew Chem Int Ed Engl; 2019 Apr; 58(15):4992-4997. PubMed ID: 30761712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Equilibrium and nonequilibrium molecular dynamics simulations of the thermal conductivity of molten alkali halides.
    Galamba N; Nieto de Castro CA; Ely JF
    J Chem Phys; 2007 May; 126(20):204511. PubMed ID: 17552782
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Connections between the Speciation and Solubility of Ni(II) and Co(II) in Molten ZnCl
    Gill SK; Huang J; Mausz J; Gakhar R; Roy S; Vila F; Topsakal M; Phillips WC; Layne B; Mahurin S; Halstenberg P; Dai S; Wishart JF; Bryantsev VS; Frenkel AI
    J Phys Chem B; 2020 Feb; 124(7):1253-1258. PubMed ID: 31977217
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal conductivity of molten alkali halides from equilibrium molecular dynamics simulations.
    Galamba N; Nieto de Castro CA; Ely JF
    J Chem Phys; 2004 May; 120(18):8676-82. PubMed ID: 15267797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interplay between structure and transport properties of molten salt mixtures of ZnCl2-NaCl-KCl: A molecular dynamics study.
    Manga VR; Swinteck N; Bringuier S; Lucas P; Deymier P; Muralidharan K
    J Chem Phys; 2016 Mar; 144(9):094501. PubMed ID: 26957165
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.