These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 31325945)

  • 1. Reducing bias in the analysis of solution-state NMR data with dynamics detectors.
    Smith AA; Ernst M; Meier BH; Ferrage F
    J Chem Phys; 2019 Jul; 151(3):034102. PubMed ID: 31325945
    [TBL] [Abstract][Full Text] [Related]  

  • 2. General framework for studying the dynamics of folded and nonfolded proteins by NMR relaxation spectroscopy and MD simulation.
    Prompers JJ; Brüschweiler R
    J Am Chem Soc; 2002 Apr; 124(16):4522-34. PubMed ID: 11960483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimized "detectors" for dynamics analysis in solid-state NMR.
    Smith AA; Ernst M; Meier BH
    J Chem Phys; 2018 Jan; 148(4):045104. PubMed ID: 29390848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of nano-second internal motion and determination of overall tumbling times independent of the time scale of internal motion in proteins from NMR relaxation data.
    Larsson G; Martinez G; Schleucher J; Wijmenga SS
    J Biomol NMR; 2003 Dec; 27(4):291-312. PubMed ID: 14512728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Model-Free or Not?
    Zumpfe K; Smith AA
    Front Mol Biosci; 2021; 8():727553. PubMed ID: 34760924
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Because the Light is Better Here: Correlation-Time Analysis by NMR Spectroscopy.
    Smith AA; Ernst M; Meier BH
    Angew Chem Int Ed Engl; 2017 Oct; 56(44):13590-13595. PubMed ID: 28856783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent developments in (15)N NMR relaxation studies that probe protein backbone dynamics.
    Ishima R
    Top Curr Chem; 2012; 326():99-122. PubMed ID: 21898206
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solid-state NMR approaches to internal dynamics of proteins: from picoseconds to microseconds and seconds.
    Krushelnitsky A; Reichert D; Saalwächter K
    Acc Chem Res; 2013 Sep; 46(9):2028-36. PubMed ID: 23875699
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How wide is the window opened by high-resolution relaxometry on the internal dynamics of proteins in solution?
    Smith AA; Bolik-Coulon N; Ernst M; Meier BH; Ferrage F
    J Biomol NMR; 2021 Mar; 75(2-3):119-131. PubMed ID: 33759077
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conformational flexibility of the group B meningococcal polysaccharide in solution.
    Henderson TJ; Venable RM; Egan W
    J Am Chem Soc; 2003 Mar; 125(10):2930-9. PubMed ID: 12617660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advances in solid-state relaxation methodology for probing site-specific protein dynamics.
    Lewandowski JR
    Acc Chem Res; 2013 Sep; 46(9):2018-27. PubMed ID: 23621579
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurement of intermediate exchange phenomena.
    Kempf JG; Loria JP
    Methods Mol Biol; 2004; 278():185-231. PubMed ID: 15317998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A structural mode-coupling approach to 15N NMR relaxation in proteins.
    Tugarinov V; Liang Z; Shapiro YE; Freed JH; Meirovitch E
    J Am Chem Soc; 2001 Apr; 123(13):3055-63. PubMed ID: 11457016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein side-chain dynamics observed by solution- and solid-state NMR: comparative analysis of methyl 2H relaxation data.
    Reif B; Xue Y; Agarwal V; Pavlova MS; Hologne M; Diehl A; Ryabov YE; Skrynnikov NR
    J Am Chem Soc; 2006 Sep; 128(38):12354-5. PubMed ID: 16984151
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Backbone motions in a crystalline protein from field-dependent 2H-NMR relaxation and line-shape analysis.
    Mack JW; Usha MG; Long J; Griffin RG; Wittebort RJ
    Biopolymers; 2000 Jan; 53(1):9-18. PubMed ID: 10644947
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast evaluation of protein dynamics from deficient
    Jaremko Ł; Jaremko M; Ejchart A; Nowakowski M
    J Biomol NMR; 2018 Apr; 70(4):219-228. PubMed ID: 29594733
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unraveling the complexity of protein backbone dynamics with combined (13)C and (15)N solid-state NMR relaxation measurements.
    Lamley JM; Lougher MJ; Sass HJ; Rogowski M; Grzesiek S; Lewandowski JR
    Phys Chem Chem Phys; 2015 Sep; 17(34):21997-2008. PubMed ID: 26234369
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformational flexibility of a microcrystalline globular protein: order parameters by solid-state NMR spectroscopy.
    Lorieau JL; McDermott AE
    J Am Chem Soc; 2006 Sep; 128(35):11505-12. PubMed ID: 16939274
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein Dynamics from Accurate Low-Field Site-Specific Longitudinal and Transverse Nuclear Spin Relaxation.
    Kadeřávek P; Bolik-Coulon N; Cousin SF; Marquardsen T; Tyburn JM; Dumez JN; Ferrage F
    J Phys Chem Lett; 2019 Oct; 10(19):5917-5922. PubMed ID: 31509419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for slow motion in proteins by multiple refocusing of heteronuclear nitrogen/proton multiple quantum coherences in NMR.
    Dittmer J; Bodenhausen G
    J Am Chem Soc; 2004 Feb; 126(5):1314-5. PubMed ID: 14759169
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.