These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 31326182)

  • 21. Invited review: Genomic selection in dairy cattle: progress and challenges.
    Hayes BJ; Bowman PJ; Chamberlain AJ; Goddard ME
    J Dairy Sci; 2009 Feb; 92(2):433-43. PubMed ID: 19164653
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Application of selection index calculations to determine selection strategies in genomic breeding programs.
    König S; Swalve HH
    J Dairy Sci; 2009 Oct; 92(10):5292-303. PubMed ID: 19762847
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Efficient use of genomic information for sustainable genetic improvement in small cattle populations.
    Obšteter J; Jenko J; Hickey JM; Gorjanc G
    J Dairy Sci; 2019 Nov; 102(11):9971-9982. PubMed ID: 31477287
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Increased genetic gains in sheep, beef and dairy breeding programs from using female reproductive technologies combined with optimal contribution selection and genomic breeding values.
    Granleese T; Clark SA; Swan AA; van der Werf JH
    Genet Sel Evol; 2015 Sep; 47(1):70. PubMed ID: 26370143
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genomic Breeding Programs Realize Larger Benefits by Cooperation in the Presence of Genotype × Environment Interaction Than Conventional Breeding Programs.
    Cao L; Liu H; Mulder HA; Henryon M; Thomasen JR; Kargo M; Sørensen AC
    Front Genet; 2020; 11():251. PubMed ID: 32373152
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Economic evaluation of progeny-testing and genomic selection schemes for small-sized nucleus dairy cattle breeding programs in developing countries.
    Kariuki CM; Brascamp EW; Komen H; Kahi AK; van Arendonk JAM
    J Dairy Sci; 2017 Mar; 100(3):2258-2268. PubMed ID: 28109609
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optimum multistage genomic selection in dairy cattle.
    Börner V; Teuscher F; Reinsch N
    J Dairy Sci; 2012 Apr; 95(4):2097-107. PubMed ID: 22459855
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Including different groups of genotyped females for genomic prediction in a Nordic Jersey population.
    Gao H; Madsen P; Nielsen US; Aamand GP; Su G; Byskov K; Jensen J
    J Dairy Sci; 2015 Dec; 98(12):9051-9. PubMed ID: 26433419
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Predicted accuracy of and response to genomic selection for new traits in dairy cattle.
    Calus MP; de Haas Y; Pszczola M; Veerkamp RF
    Animal; 2013 Feb; 7(2):183-91. PubMed ID: 23031684
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optimal strategies for the use of genomic selection in dairy cattle breeding programs.
    Wensch-Dorendorf M; Yin T; Swalve HH; König S
    J Dairy Sci; 2011 Aug; 94(8):4140-51. PubMed ID: 21787949
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reliability of breeding values for feed intake and feed efficiency traits in dairy cattle: When dry matter intake recordings are sparse under different scenarios.
    Negussie E; Mehtiö T; Mäntysaari P; Løvendahl P; Mäntysaari EA; Lidauer MH
    J Dairy Sci; 2019 Aug; 102(8):7248-7262. PubMed ID: 31155258
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of a breeding scheme combined by genomic pre-selection and progeny testing on annual genetic gain in a dairy cattle population.
    Yamazaki T; Togashi K; Iwama S; Matsumoto S; Moribe K; Nakanishi T; Hagiya K; Hayasaka K
    Anim Sci J; 2014 Jun; 85(6):639-49. PubMed ID: 24612342
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Integrating genomic selection into dairy cattle breeding programmes: a review.
    Bouquet A; Juga J
    Animal; 2013 May; 7(5):705-13. PubMed ID: 23200196
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Deterministic models of breeding scheme designs that incorporate genomic selection.
    Pryce JE; Goddard ME; Raadsma HW; Hayes BJ
    J Dairy Sci; 2010 Nov; 93(11):5455-66. PubMed ID: 20965361
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of genotype x environment interaction on genetic gain in breeding programs.
    Mulder HA; Bijma P
    J Anim Sci; 2005 Jan; 83(1):49-61. PubMed ID: 15583042
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genotype by environment (climate) interaction improves genomic prediction for production traits in US Holstein cattle.
    Tiezzi F; de Los Campos G; Parker Gaddis KL; Maltecca C
    J Dairy Sci; 2017 Mar; 100(3):2042-2056. PubMed ID: 28109596
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genomic prediction for Nordic Red Cattle using one-step and selection index blending.
    Su G; Madsen P; Nielsen US; Mäntysaari EA; Aamand GP; Christensen OF; Lund MS
    J Dairy Sci; 2012 Feb; 95(2):909-17. PubMed ID: 22281355
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genotype by environment interactions in fertility traits in New Zealand dairy cows.
    Craig HJB; Stachowicz K; Black M; Parry M; Burke CR; Meier S; Amer PR
    J Dairy Sci; 2018 Dec; 101(12):10991-11003. PubMed ID: 30243634
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reducing bias in the dairy cattle single-step genomic evaluation by ignoring bulls without progeny.
    Koivula M; Strandén I; Aamand GP; Mäntysaari EA
    J Anim Breed Genet; 2018 Apr; 135(2):107-115. PubMed ID: 29484731
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Heritabilities and genetic correlations in the same traits across different strata of herds created according to continuous genomic, genetic, and phenotypic descriptors.
    Yin T; König S
    J Dairy Sci; 2018 Mar; 101(3):2171-2186. PubMed ID: 29248231
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.