BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

393 related articles for article (PubMed ID: 31326668)

  • 21. In vivo osseointegration of Ti implants with a strontium-containing nanotubular coating.
    Dang Y; Zhang L; Song W; Chang B; Han T; Zhang Y; Zhao L
    Int J Nanomedicine; 2016; 11():1003-11. PubMed ID: 27042055
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In Vivo Response of Laser Processed Porous Titanium Implants for Load-Bearing Implants.
    Bandyopadhyay A; Shivaram A; Tarafder S; Sahasrabudhe H; Banerjee D; Bose S
    Ann Biomed Eng; 2017 Jan; 45(1):249-260. PubMed ID: 27307009
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fabrication of an ordered micro-/nanotextured titanium surface to improve osseointegration.
    Xu Z; Huang J; He Y; Su J; Xu L; Zeng X
    Colloids Surf B Biointerfaces; 2022 Jun; 214():112446. PubMed ID: 35305320
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sustained raloxifene release from hyaluronan-alendronate-functionalized titanium nanotube arrays capable of enhancing osseointegration in osteoporotic rabbits.
    Mu C; Hu Y; Huang L; Shen X; Li M; Li L; Gu H; Yu Y; Xia Z; Cai K
    Mater Sci Eng C Mater Biol Appl; 2018 Jan; 82():345-353. PubMed ID: 29025668
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Differential effect of hydroxyapatite nano-particle versus nano-rod decorated titanium micro-surface on osseointegration.
    Bai L; Liu Y; Du Z; Weng Z; Yao W; Zhang X; Huang X; Yao X; Crawford R; Hang R; Huang D; Tang B; Xiao Y
    Acta Biomater; 2018 Aug; 76():344-358. PubMed ID: 29908975
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nanotubes Functionalized with BMP2 Knuckle Peptide Improve the Osseointegration of Titanium Implants in Rabbits.
    Ma Y; Zhang Z; Liu Y; Li H; Wang N; Liu W; Li W; Jin L; Wang J; Chen S
    J Biomed Nanotechnol; 2015 Feb; 11(2):236-44. PubMed ID: 26349299
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Applications of Titania Nanotubes in Bone Biology.
    Nair M; Elizabeth E
    J Nanosci Nanotechnol; 2015 Feb; 15(2):939-55. PubMed ID: 26353600
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dental implants modified with drug releasing titania nanotubes: therapeutic potential and developmental challenges.
    Gulati K; Ivanovski S
    Expert Opin Drug Deliv; 2017 Aug; 14(8):1009-1024. PubMed ID: 27892717
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Understanding and augmenting the stability of therapeutic nanotubes on anodized titanium implants.
    Li T; Gulati K; Wang N; Zhang Z; Ivanovski S
    Mater Sci Eng C Mater Biol Appl; 2018 Jul; 88():182-195. PubMed ID: 29636134
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Advanced biopolymer-coated drug-releasing titania nanotubes (TNTs) implants with simultaneously enhanced osteoblast adhesion and antibacterial properties.
    Kumeria T; Mon H; Aw MS; Gulati K; Santos A; Griesser HJ; Losic D
    Colloids Surf B Biointerfaces; 2015 Jun; 130():255-63. PubMed ID: 25944564
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Anodized 3D-printed titanium implants with dual micro- and nano-scale topography promote interaction with human osteoblasts and osteocyte-like cells.
    Gulati K; Prideaux M; Kogawa M; Lima-Marques L; Atkins GJ; Findlay DM; Losic D
    J Tissue Eng Regen Med; 2017 Dec; 11(12):3313-3325. PubMed ID: 27925441
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhanced Osseointegration of Hierarchically Structured Ti Implant with Electrically Bioactive SnO
    Zhou R; Han Y; Cao J; Li M; Jin G; Du Y; Luo H; Yang Y; Zhang L; Su B
    ACS Appl Mater Interfaces; 2018 Sep; 10(36):30191-30200. PubMed ID: 30130089
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Antibacterial and osteogenic stem cell differentiation properties of photoinduced TiO₂ nanoparticle-decorated TiO₂ nanotubes.
    Liu W; Su P; Chen S; Wang N; Wang J; Liu Y; Ma Y; Li H; Zhang Z; Webster TJ
    Nanomedicine (Lond); 2015; 10(5):713-23. PubMed ID: 25816875
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Understanding and optimizing the antibacterial functions of anodized nano-engineered titanium implants.
    Chopra D; Gulati K; Ivanovski S
    Acta Biomater; 2021 Jun; 127():80-101. PubMed ID: 33744499
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bioactivity of Ti-6Al-4V alloy implants treated with ibandronate after the formation of the nanotube TiO2 layer.
    Moon SH; Lee SJ; Park IS; Lee MH; Soh YJ; Bae TS; Kim HS
    J Biomed Mater Res B Appl Biomater; 2012 Nov; 100(8):2053-9. PubMed ID: 22915455
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Study of a new bone-targeting titanium implant-bone interface.
    Liu X; Zhang Y; Li S; Wang Y; Sun T; Li Z; Cai L; Wang X; Zhou L; Lai R
    Int J Nanomedicine; 2016; 11():6307-6324. PubMed ID: 27932879
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Silicon-Doped Titanium Dioxide Nanotubes Promoted Bone Formation on Titanium Implants.
    Zhao X; Wang T; Qian S; Liu X; Sun J; Li B
    Int J Mol Sci; 2016 Feb; 17(3):292. PubMed ID: 26927080
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The synergistic effect of TiO
    Jiang N; Du P; Qu W; Li L; Liu Z; Zhu S
    Int J Nanomedicine; 2016; 11():4719-4733. PubMed ID: 27695328
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhanced osteoconductivity of titanium implant by polarization-induced surface charges.
    Nozaki K; Wang W; Horiuchi N; Nakamura M; Takakuda K; Yamashita K; Nagai A
    J Biomed Mater Res A; 2014 Sep; 102(9):3077-86. PubMed ID: 24123807
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Improved osteoblast adhesion and osseointegration on TiO
    Li Y; Li B; Song Y; Ma A; Li C; Zhang X; Li H; Zhang Q; Zhang K
    Dent Mater J; 2019 Mar; 38(2):278-286. PubMed ID: 30541994
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.