These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 31326695)
21. Long-term effects of thiosulfate on the competition between sulfur-mediated bacteria and glycogen accumulating organisms in sulfate-rich carbon-deficient wastewater. Zhou L; Li Z; Cheng B; Jiang J; Bi X; Wang Z; Chen G; Guo G Environ Res; 2024 Jan; 240(Pt 1):117596. PubMed ID: 37931736 [TBL] [Abstract][Full Text] [Related]
22. Anaerobic oxidation of methane coupled to thiosulfate reduction in a biotrickling filter. Cassarini C; Rene ER; Bhattarai S; Esposito G; Lens PNL Bioresour Technol; 2017 Sep; 240():214-222. PubMed ID: 28318933 [TBL] [Abstract][Full Text] [Related]
23. Assessing Intermediate Formation and Electron Competition during Thiosulfate-Driven Denitrification: An Experimental and Modeling Study. Yang Y; Perez Calleja P; Liu Y; Nerenberg R; Chai H Environ Sci Technol; 2022 Aug; 56(16):11760-11770. PubMed ID: 35921133 [TBL] [Abstract][Full Text] [Related]
24. Effects of an organic carbon source on the coupling of sulfur(thiosulfate)-driven denitration with Anammox process. Liu Z; Lin W; Luo Q; Chen Y; Hu Y Bioresour Technol; 2021 Sep; 335():125280. PubMed ID: 34015567 [TBL] [Abstract][Full Text] [Related]
25. Metagenomic analysis revealed the sulfur- and iron- oxidation capabilities of heterotrophic denitrifying sludge. Huang K; Li Q; Sun H; Zhang XX; Ren H; Ye L Ecotoxicology; 2021 Sep; 30(7):1399-1407. PubMed ID: 33210230 [TBL] [Abstract][Full Text] [Related]
26. Sulfur formation and recovery in a thiosulfate-oxidizing bioreactor. González-Sánchez A; Meulepas R; Revah S Environ Technol; 2008 Aug; 29(8):847-53. PubMed ID: 18724639 [TBL] [Abstract][Full Text] [Related]
27. Uncovering interactions among ternary electron donors of organic carbon source, thiosulfate and Fe Zhang Y; He Y; Jia L; Xu L; Wang Z; He Y; Xiong L; Lin X; Chen H; Xue G Water Res; 2024 Feb; 249():120924. PubMed ID: 38029486 [TBL] [Abstract][Full Text] [Related]
28. Use of elemental sulfur and thiosulfate as electron sources for water denitrification. Sahinkaya E; Dursun N Bioprocess Biosyst Eng; 2015 Mar; 38(3):531-41. PubMed ID: 25266591 [TBL] [Abstract][Full Text] [Related]
29. A new sulfidogenic oxic-settling anaerobic (SOSA) process: The effects of sulfur-cycle bioaugmentation on the operational performance, sludge properties and microbial communities. Huang H; Ekama GA; Biswal BK; Dai J; Jiang F; Chen GH; Wu D Water Res; 2019 Oct; 162():30-42. PubMed ID: 31254884 [TBL] [Abstract][Full Text] [Related]
30. Elucidating the biofilm properties and biokinetics of a sulfur-oxidizing moving-bed biofilm for mainstream nitrogen removal. Cui YX; Guo G; Ekama GA; Deng YF; Chui HK; Chen GH; Wu D Water Res; 2019 Oct; 162():246-257. PubMed ID: 31279316 [TBL] [Abstract][Full Text] [Related]
31. Mitigating nitrite accumulation during S Bao HX; Li ZR; Song ZB; Wang AJ; Zhang XN; Qian ZM; Sun YL; Cheng HY Environ Res; 2022 Mar; 204(Pt A):112016. PubMed ID: 34509485 [TBL] [Abstract][Full Text] [Related]
32. Denitrification at extremely high pH values by the alkaliphilic, obligately chemolithoautotrophic, sulfur-oxidizing bacterium Thioalkalivibrio denitrificans strain ALJD. Sorokin DY; Kuenen JG; Jetten MS Arch Microbiol; 2001 Feb; 175(2):94-101. PubMed ID: 11285746 [TBL] [Abstract][Full Text] [Related]
33. The microbial sulfur cycle at extremely haloalkaline conditions of soda lakes. Sorokin DY; Kuenen JG; Muyzer G Front Microbiol; 2011; 2():44. PubMed ID: 21747784 [TBL] [Abstract][Full Text] [Related]
34. Autotrophic denitrification by sulfur-based immobilized electron donor for enhanced nitrogen removal: Denitrification performance, microbial interspecific interaction and functional traits. Tong Y; Zhang Q; Li Z; Meng G; Liu B; Jiang Y; Li S Bioresour Technol; 2024 Jun; 401():130747. PubMed ID: 38677382 [TBL] [Abstract][Full Text] [Related]
35. Thiosulfate as external electron donor accelerating denitrification at low temperature condition in S Zhang XN; Zhu L; Li ZR; Sun YL; Qian ZM; Li SY; Cheng HY; Wang AJ Environ Res; 2022 Jul; 210():113009. PubMed ID: 35218715 [TBL] [Abstract][Full Text] [Related]
36. Thiosulfate-driven autotrophic and mixotrophic denitrification processes for secondary effluent treatment: Reducing sulfate production and nitrous oxide emission. Sun S; Liu J; Zhang M; He S Bioresour Technol; 2020 Mar; 300():122651. PubMed ID: 31887578 [TBL] [Abstract][Full Text] [Related]
37. Using cold-adapted river-bottom sediment as seed sludge for sulfur-based autotrophic denitrification operated at mesophilic and psychrophilic temperatures. Xing W; He Z; Wang Y; Cai W; Jia F; Yao H Sci Total Environ; 2020 Sep; 735():139345. PubMed ID: 32480146 [TBL] [Abstract][Full Text] [Related]
38. Sulfur disproportionation realizes an organic-free sulfidogenic process for sustainable treatment of acid mine drainage. Zou J; Qiu YY; Li H; Jiang F Water Res; 2023 Apr; 232():119647. PubMed ID: 36738555 [TBL] [Abstract][Full Text] [Related]
39. A pilot-scale sulfur-based sulfidogenic system for the treatment of Cu-laden electroplating wastewater using real domestic sewage as electron donor. Li G; Liang Z; Sun J; Qiu Y; Qiu C; Liang X; Zhu Y; Wang P; Li Y; Jiang F Water Res; 2021 May; 195():116999. PubMed ID: 33714911 [TBL] [Abstract][Full Text] [Related]
40. Low temperature, autotrophic microbial denitrification using thiosulfate or thiocyanate as electron donor. Broman E; Jawad A; Wu X; Christel S; Ni G; Lopez-Fernandez M; Sundkvist JE; Dopson M Biodegradation; 2017 Aug; 28(4):287-301. PubMed ID: 28577026 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]