These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 31326812)
1. A simplified model to simulate bioaugmented anaerobic digestion of lignocellulosic biomass: Biogas production efficiency related to microbiological data. Ferraro A; Massini G; Mazzurco Miritana V; Signorini A; Race M; Fabbricino M Sci Total Environ; 2019 Nov; 691():885-895. PubMed ID: 31326812 [TBL] [Abstract][Full Text] [Related]
2. Combined bioaugmentation with anaerobic ruminal fungi and fermentative bacteria to enhance biogas production from wheat straw and mushroom spent straw. Ferraro A; Dottorini G; Massini G; Mazzurco Miritana V; Signorini A; Lembo G; Fabbricino M Bioresour Technol; 2018 Jul; 260():364-373. PubMed ID: 29649729 [TBL] [Abstract][Full Text] [Related]
3. Fungal bioaugmentation of anaerobic digesters fed with lignocellulosic biomass: What to expect from anaerobic fungus Orpinomyces sp. Akyol Ç; Ince O; Bozan M; Ozbayram EG; Ince B Bioresour Technol; 2019 Apr; 277():1-10. PubMed ID: 30654102 [TBL] [Abstract][Full Text] [Related]
4. A novel enrichment approach for anaerobic digestion of lignocellulosic biomass: Process performance enhancement through an inoculum habitat selection. Ferraro A; Massini G; Mazzurco Miritana V; Rosa S; Signorini A; Fabbricino M Bioresour Technol; 2020 Oct; 313():123703. PubMed ID: 32580121 [TBL] [Abstract][Full Text] [Related]
5. Laboratory-scale bioaugmentation relieves acetate accumulation and stimulates methane production in stalled anaerobic digesters. Town JR; Dumonceaux TJ Appl Microbiol Biotechnol; 2016 Jan; 100(2):1009-17. PubMed ID: 26481626 [TBL] [Abstract][Full Text] [Related]
6. Comparison of solid-state to liquid anaerobic digestion of lignocellulosic feedstocks for biogas production. Brown D; Shi J; Li Y Bioresour Technol; 2012 Nov; 124():379-86. PubMed ID: 22995169 [TBL] [Abstract][Full Text] [Related]
7. Upflow anaerobic sludge blanket reactor--a review. Bal AS; Dhagat NN Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675 [TBL] [Abstract][Full Text] [Related]
8. Enhancing biogas generation from lignocellulosic biomass through biological pretreatment: Exploring the role of ruminant microbes and anaerobic fungi. Tamilselvan R; Immanuel Selwynraj A Anaerobe; 2024 Feb; 85():102815. PubMed ID: 38145708 [TBL] [Abstract][Full Text] [Related]
9. Psychrophilic anaerobic digestion of lignocellulosic biomass: a characterization study. Saady NM; Massé DI Bioresour Technol; 2013 Aug; 142():663-71. PubMed ID: 23796576 [TBL] [Abstract][Full Text] [Related]
10. Effects of liquid digestate pretreatment on biogas production for anaerobic digestion of wheat straw. Liu T; Zhou X; Li Z; Wang X; Sun J Bioresour Technol; 2019 May; 280():345-351. PubMed ID: 30780094 [TBL] [Abstract][Full Text] [Related]
11. Application of rumen and anaerobic sludge microbes for bio harvesting from lignocellulosic biomass. Nguyen LN; Nguyen AQ; Johir MAH; Guo W; Ngo HH; Chaves AV; Nghiem LD Chemosphere; 2019 Aug; 228():702-708. PubMed ID: 31063917 [TBL] [Abstract][Full Text] [Related]
12. Enhanced anaerobic digestion performance by two artificially constructed microbial consortia capable of woody biomass degradation and chlorophenols detoxification. Ali SS; Kornaros M; Manni A; Sun J; El-Shanshoury AER; Kenawy ER; Khalil MA J Hazard Mater; 2020 May; 389():122076. PubMed ID: 32004834 [TBL] [Abstract][Full Text] [Related]
13. Effect of bioaugmentation by cellulolytic bacteria enriched from sheep rumen on methane production from wheat straw. Ozbayram EG; Kleinsteuber S; Nikolausz M; Ince B; Ince O Anaerobe; 2017 Aug; 46():122-130. PubMed ID: 28323135 [TBL] [Abstract][Full Text] [Related]
14. Pretreatment strategies for enhanced biogas production from lignocellulosic biomass. Abraham A; Mathew AK; Park H; Choi O; Sindhu R; Parameswaran B; Pandey A; Park JH; Sang BI Bioresour Technol; 2020 Apr; 301():122725. PubMed ID: 31958690 [TBL] [Abstract][Full Text] [Related]
15. Microbiological fermentation of lignocellulosic biomass: current state and prospects of mathematical modeling. Lübken M; Gehring T; Wichern M Appl Microbiol Biotechnol; 2010 Feb; 85(6):1643-52. PubMed ID: 19960191 [TBL] [Abstract][Full Text] [Related]
16. Enhancement of microbial diversity and methane yield by bacterial bioaugmentation through the anaerobic digestion of Haematococcus pluvialis. Aydin S Appl Microbiol Biotechnol; 2016 Jun; 100(12):5631-7. PubMed ID: 27067588 [TBL] [Abstract][Full Text] [Related]
17. Bioaugmentation of overloaded anaerobic digesters restores function and archaeal community. Tale VP; Maki JS; Zitomer DH Water Res; 2015 Mar; 70():138-47. PubMed ID: 25528544 [TBL] [Abstract][Full Text] [Related]
18. Solid-state anaerobic digestion of lignocellulosic biomass: Recent progress and perspectives. Ge X; Xu F; Li Y Bioresour Technol; 2016 Apr; 205():239-49. PubMed ID: 26832395 [TBL] [Abstract][Full Text] [Related]
19. Assessment of hydrogen metabolism in commercial anaerobic digesters. Kern T; Theiss J; Röske K; Rother M Appl Microbiol Biotechnol; 2016 May; 100(10):4699-710. PubMed ID: 26995607 [TBL] [Abstract][Full Text] [Related]
20. Microbial communities involved in biogas production from wheat straw as the sole substrate within a two-phase solid-state anaerobic digestion. Heeg K; Pohl M; Sontag M; Mumme J; Klocke M; Nettmann E Syst Appl Microbiol; 2014 Dec; 37(8):590-600. PubMed ID: 25467556 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]