These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
742 related articles for article (PubMed ID: 31327039)
1. Developing a prediction model based on MRI for pathological complete response after neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Wan L; Zhang C; Zhao Q; Meng Y; Zou S; Yang Y; Liu Y; Jiang J; Ye F; Ouyang H; Zhao X; Zhang H Abdom Radiol (NY); 2019 Sep; 44(9):2978-2987. PubMed ID: 31327039 [TBL] [Abstract][Full Text] [Related]
2. [Predictive value of combination of MRI tumor regression grade and apparent diffusion coefficient for pathological complete remission after neoadjuvant treatment of locally advanced rectal cancer]. Xu N; Huang FC; Li WL; Luan X; Jiang YM; He B Zhonghua Wei Chang Wai Ke Za Zhi; 2021 Apr; 24(4):359-365. PubMed ID: 33878826 [No Abstract] [Full Text] [Related]
3. Value of perfusion parameters from golden-angle radial sparse parallel dynamic contrast-enhanced magnetic resonance imaging in predicting pathological complete response after neoadjuvant chemoradiotherapy for locally advanced rectal cancer. Pan YN; Gu MY; Mao QL; Wei YG; Zhang L; Tang GY Diagn Interv Radiol; 2024 Jul; 30(4):228-235. PubMed ID: 38528760 [TBL] [Abstract][Full Text] [Related]
4. Predicting pathological complete response by comparing MRI-based radiomics pre- and postneoadjuvant radiotherapy for locally advanced rectal cancer. Li Y; Liu W; Pei Q; Zhao L; Güngör C; Zhu H; Song X; Li C; Zhou Z; Xu Y; Wang D; Tan F; Yang P; Pei H Cancer Med; 2019 Dec; 8(17):7244-7252. PubMed ID: 31642204 [TBL] [Abstract][Full Text] [Related]
5. [The value of MR T2WI signal intensity related parameters for predicting pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer]. Wan LJ; Zhang CD; Zhang HM; Meng YK; Ye F; Liu Y; Zhao XM; Zhou CW Zhonghua Zhong Liu Za Zhi; 2019 Nov; 41(11):837-843. PubMed ID: 31770851 [No Abstract] [Full Text] [Related]
6. MRI-based delta-radiomics are predictive of pathological complete response after neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Wan L; Peng W; Zou S; Ye F; Geng Y; Ouyang H; Zhao X; Zhang H Acad Radiol; 2021 Nov; 28 Suppl 1():S95-S104. PubMed ID: 33189550 [TBL] [Abstract][Full Text] [Related]
7. [Application value of texture analysis of magnetic resonance images in prediction of neoadjuvant chemoradiotherapy efficacy for rectal cancer]. Shu Z; Fang S; Ding Z; Mao D; Pang P; Gong X Zhonghua Wei Chang Wai Ke Za Zhi; 2018 Sep; 21(9):1051-1058. PubMed ID: 30269327 [TBL] [Abstract][Full Text] [Related]
8. Does restaging MRI radiomics analysis improve pathological complete response prediction in rectal cancer patients? A prognostic model development. Chiloiro G; Cusumano D; de Franco P; Lenkowicz J; Boldrini L; Carano D; Barbaro B; Corvari B; Dinapoli N; Giraffa M; Meldolesi E; Manfredi R; Valentini V; Gambacorta MA Radiol Med; 2022 Jan; 127(1):11-20. PubMed ID: 34725772 [TBL] [Abstract][Full Text] [Related]
9. MRI T2-weighted sequences-based texture analysis (TA) as a predictor of response to neoadjuvant chemo-radiotherapy (nCRT) in patients with locally advanced rectal cancer (LARC). Crimì F; Capelli G; Spolverato G; Bao QR; Florio A; Milite Rossi S; Cecchin D; Albertoni L; Campi C; Pucciarelli S; Stramare R Radiol Med; 2020 Dec; 125(12):1216-1224. PubMed ID: 32410063 [TBL] [Abstract][Full Text] [Related]
10. Radiomics analysis of multiparametric MRI for prediction of pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Cui Y; Yang X; Shi Z; Yang Z; Du X; Zhao Z; Cheng X Eur Radiol; 2019 Mar; 29(3):1211-1220. PubMed ID: 30128616 [TBL] [Abstract][Full Text] [Related]
11. Deep learning-based radiomic features for improving neoadjuvant chemoradiation response prediction in locally advanced rectal cancer. Fu J; Zhong X; Li N; Van Dams R; Lewis J; Sung K; Raldow AC; Jin J; Qi XS Phys Med Biol; 2020 Apr; 65(7):075001. PubMed ID: 32092710 [TBL] [Abstract][Full Text] [Related]
12. Utility of ctDNA in predicting response to neoadjuvant chemoradiotherapy and prognosis assessment in locally advanced rectal cancer: A prospective cohort study. Wang Y; Yang L; Bao H; Fan X; Xia F; Wan J; Shen L; Guan Y; Bao H; Wu X; Xu Y; Shao Y; Sun Y; Tong T; Li X; Xu Y; Cai S; Zhu J; Zhang Z PLoS Med; 2021 Aug; 18(8):e1003741. PubMed ID: 34464382 [TBL] [Abstract][Full Text] [Related]
13. [A prediction model of pathological complete response in patients with locally advanced rectal cancer after PD-1 antibody combined with total neoadjuvant chemoradiotherapy based on MRI radiomics]. Zhang XY; Zhu HT; Li XT; Li YJ; Li ZW; Wang WH; Wu AW; Sun YS; Zhang L Zhonghua Wei Chang Wai Ke Za Zhi; 2022 Mar; 25(3):228-234. PubMed ID: 35340172 [No Abstract] [Full Text] [Related]
14. [Construction of a model based on multipoint full-layer puncture biopsy for predicting pathological complete response after neoadjuvant therapy for locally advanced rectal cancer]. Jin Y; Zhai ZW; Sun LT; Xia PD; Hu H; Jiang CQ; Zhao BC; Qu H; Qian Q; Dai Y; Yao HW; Wang ZJ; Han JG Zhonghua Wei Chang Wai Ke Za Zhi; 2024 Apr; 27(4):403-411. PubMed ID: 38644246 [No Abstract] [Full Text] [Related]
15. Diagnostic accuracy of MRI in assessing tumor regression and identifying complete response in patients with locally advanced rectal cancer after neoadjuvant treatment. Aker M; Boone D; Chandramohan A; Sizer B; Motson R; Arulampalam T Abdom Radiol (NY); 2018 Dec; 43(12):3213-3219. PubMed ID: 29767284 [TBL] [Abstract][Full Text] [Related]
16. MRI features and texture analysis for the early prediction of therapeutic response to neoadjuvant chemoradiotherapy and tumor recurrence of locally advanced rectal cancer. Park H; Kim KA; Jung JH; Rhie J; Choi SY Eur Radiol; 2020 Aug; 30(8):4201-4211. PubMed ID: 32270317 [TBL] [Abstract][Full Text] [Related]
17. Machine learning-based response assessment in patients with rectal cancer after neoadjuvant chemoradiotherapy: radiomics analysis for assessing tumor regression grade using T2-weighted magnetic resonance images. Lee YD; Kim HG; Seo M; Moon SK; Park SJ; You MW Int J Colorectal Dis; 2024 May; 39(1):78. PubMed ID: 38789861 [TBL] [Abstract][Full Text] [Related]
18. Tumor compactness improves the preoperative volumetry-based prediction of the pathological complete response of rectal cancer after preoperative concurrent chemoradiotherapy. Hsu CY; Wang CW; Kuo CC; Chen YH; Lan KH; Cheng AL; Kuo SH Oncotarget; 2017 Jan; 8(5):7921-7934. PubMed ID: 27974702 [TBL] [Abstract][Full Text] [Related]
19. Extracellular volume fraction determined by equilibrium contrast-enhanced CT for the prediction of the pathological complete response to neoadjuvant chemoradiotherapy for locally advanced rectal cancer. Luo Y; Liu L; Liu D; Shen H; Wang X; Fan C; Zeng Z; Zhang J; Tan Y; Zhang X; Wu J; Zhang J Eur Radiol; 2023 Jun; 33(6):4042-4051. PubMed ID: 36462046 [TBL] [Abstract][Full Text] [Related]
20. MR-based artificial intelligence model to assess response to therapy in locally advanced rectal cancer. Ferrari R; Mancini-Terracciano C; Voena C; Rengo M; Zerunian M; Ciardiello A; Grasso S; Mare' V; Paramatti R; Russomando A; Santacesaria R; Satta A; Solfaroli Camillocci E; Faccini R; Laghi A Eur J Radiol; 2019 Sep; 118():1-9. PubMed ID: 31439226 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]