These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
322 related articles for article (PubMed ID: 31327066)
1. Electrochemical chiral sensing of tryptophan enantiomers by using 3D nitrogen-doped reduced graphene oxide and self-assembled polysaccharides. Niu X; Yang X; Mo Z; Liu N; Guo R; Pan Z; Liu Z Mikrochim Acta; 2019 Jul; 186(8):557. PubMed ID: 31327066 [TBL] [Abstract][Full Text] [Related]
2. Perylene-functionalized graphene sheets modified with chitosan for voltammetric discrimination of tryptophan enantiomers. Yang X; Niu X; Mo Z; Guo R; Liu N; Zhao P; Liu Z Mikrochim Acta; 2019 May; 186(6):333. PubMed ID: 31065866 [TBL] [Abstract][Full Text] [Related]
3. A sensitive electrochemical sensor for chiral detection of tryptophan enantiomers by using carbon black and β‑cyclodextrin. Liang J; Song Y; Zhao Y; Gao Y; Hou J; Yang G Mikrochim Acta; 2023 Oct; 190(11):433. PubMed ID: 37814099 [TBL] [Abstract][Full Text] [Related]
4. An electrochemical chiral sensor based on the synergy of chiral ionic liquid and 3D-NGMWCNT for tryptophan enantioselective recognition. Liu N; Liu J; Niu X; Wang J; Guo R; Mo Z Mikrochim Acta; 2021 Apr; 188(5):163. PubMed ID: 33839948 [TBL] [Abstract][Full Text] [Related]
5. Fabrication of an electrochemical chiral sensor via an integrated polysaccharides/3D nitrogen-doped graphene-CNT frame. Niu X; Yang X; Mo Z; Wang J; Pan Z; Liu Z; Shuai C; Liu G; Liu N; Guo R Bioelectrochemistry; 2020 Feb; 131():107396. PubMed ID: 31704455 [TBL] [Abstract][Full Text] [Related]
6. Voltammetric chiral discrimination of tryptophan using a multilayer nanocomposite with implemented amino-modified β-cyclodextrin as recognition element. Song J; Yang C; Ma J; Han Q; Ran P; Fu Y Mikrochim Acta; 2018 Mar; 185(4):230. PubMed ID: 29594758 [TBL] [Abstract][Full Text] [Related]
7. Electrochemical recognition of tryptophan enantiomers using a multi-walled carbon nanotube@polydopamine composite loaded with copper(II). Qian J; Yi Y; Zhang D; Zhu G Mikrochim Acta; 2019 May; 186(6):358. PubMed ID: 31098704 [TBL] [Abstract][Full Text] [Related]
8. Preparation of Highly Dispersed Reduced Graphene Oxide Modified with Carboxymethyl Chitosan for Highly Sensitive Detection of Trace Cu(II) in Water. Chen S; Ding R; Ma X; Xue L; Lin X; Fan X; Luo Z Polymers (Basel); 2016 Apr; 8(4):. PubMed ID: 30979210 [TBL] [Abstract][Full Text] [Related]
9. A glassy carbon electrode modified with a composite consisting of gold nanoparticle, reduced graphene oxide and poly(L-arginine) for simultaneous voltammetric determination of dopamine, serotonin and L-tryptophan. Khan MZH; Liu X; Tang Y; Zhu J; Hu W; Liu X Mikrochim Acta; 2018 Aug; 185(9):439. PubMed ID: 30167981 [TBL] [Abstract][Full Text] [Related]
10. Novel N-Doped Carbon Dots/β-Cyclodextrin Nanocomposites for Enantioselective Recognition of Tryptophan Enantiomers. Xiao Q; Lu S; Huang C; Su W; Huang S Sensors (Basel); 2016 Nov; 16(11):. PubMed ID: 27834863 [TBL] [Abstract][Full Text] [Related]
11. The application of thionine-graphene nanocomposite in chiral sensing for Tryptophan enantiomers. Guo L; Zhang Q; Huang Y; Han Q; Wang Y; Fu Y Bioelectrochemistry; 2013 Dec; 94():87-93. PubMed ID: 24084594 [TBL] [Abstract][Full Text] [Related]
12. Perylene-functionalized graphene sheets modified with β-cyclodextrin for the voltammetric discrimination of phenylalanine enantiomers. Niu X; Yang X; Mo Z; Guo R; Liu N; Zhao P; Liu Z Bioelectrochemistry; 2019 Oct; 129():189-198. PubMed ID: 31195330 [TBL] [Abstract][Full Text] [Related]
13. An electrochemical and computational study for discrimination of D- and L-cystine by reduced graphene oxide/β-cyclodextrin. Zor E; Bingol H; Ramanaviciene A; Ramanavicius A; Ersoz M Analyst; 2015 Jan; 140(1):313-21. PubMed ID: 25382195 [TBL] [Abstract][Full Text] [Related]
14. A glassy carbon electrode modified with nitrogen-doped reduced graphene oxide and melamine for ultra-sensitive voltammetric determination of bisphenol A. Qin J; Shen J; Xu X; Yuan Y; He G; Chen H Mikrochim Acta; 2018 Sep; 185(10):459. PubMed ID: 30219973 [TBL] [Abstract][Full Text] [Related]
15. Simultaneous electrochemical sensing of serotonin, dopamine and ascorbic acid by using a nanocomposite prepared from reduced graphene oxide, Fe Liang W; Rong Y; Fan L; Zhang C; Dong W; Li J; Niu J; Yang C; Shuang S; Dong C; Wong WY Mikrochim Acta; 2019 Nov; 186(12):751. PubMed ID: 31701250 [TBL] [Abstract][Full Text] [Related]
16. Nafion-stabilized black phosphorus nanosheets-maltosyl-β-cyclodextrin as a chiral sensor for tryptophan enantiomers. Zou J; Yu JG Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110910. PubMed ID: 32409064 [TBL] [Abstract][Full Text] [Related]
17. Ultra sensitive detection of Cd (II) using reduced graphene oxide/carboxymethyl cellulose/glutathione modified electrode. Priya T; Dhanalakshmi N; Thennarasu S; Thinakaran N Carbohydr Polym; 2018 Oct; 197():366-374. PubMed ID: 30007624 [TBL] [Abstract][Full Text] [Related]
18. Graphene-ferrocene functionalized cyclodextrin composite with high electrochemical recognition capability for phenylalanine enantiomers. Niu X; Mo Z; Yang X; Shuai C; Liu N; Guo R Bioelectrochemistry; 2019 Aug; 128():74-82. PubMed ID: 30933903 [TBL] [Abstract][Full Text] [Related]
19. β-Cyclodextrin functionalized 3D reduced graphene oxide composite-based electrochemical sensor for the sensitive detection of dopamine. Chen X; Li N; Rong Y; Hou Y; Huang Y; Liang W RSC Adv; 2021 Aug; 11(45):28052-28060. PubMed ID: 35480757 [TBL] [Abstract][Full Text] [Related]
20. Voltammetric sensing of formaldehyde by using a nanocomposite prepared by reductive deposition of palladium and platinum on polypyrrole-coated nitrogen-doped reduced graphene oxide. Mahmoudian MR; Basirun WJ; Woi PM; Hazarkhani H; Alias YB Mikrochim Acta; 2019 May; 186(6):369. PubMed ID: 31119482 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]