These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
322 related articles for article (PubMed ID: 31327066)
21. Simultaneous determination of trace Cd(II), Pb(II) and Cu(II) by differential pulse anodic stripping voltammetry using a reduced graphene oxide-chitosan/poly-l-lysine nanocomposite modified glassy carbon electrode. Guo Z; Li DD; Luo XK; Li YH; Zhao QN; Li MM; Zhao YT; Sun TS; Ma C J Colloid Interface Sci; 2017 Mar; 490():11-22. PubMed ID: 27870951 [TBL] [Abstract][Full Text] [Related]
22. Graphene-based hybrid for enantioselective sensing applications. Zor E; Morales-Narváez E; Alpaydin S; Bingol H; Ersoz M; Merkoçi A Biosens Bioelectron; 2017 Jan; 87():410-416. PubMed ID: 27589404 [TBL] [Abstract][Full Text] [Related]
23. A renewable electrochemical sensor based on a self-assembled framework of chiral molecules for efficient identification of tryptophan isomers. Gong T; Zhu S; Huang S; Gu P; Xiong Y; Zhang J; Jiang X Anal Chim Acta; 2022 Jan; 1191():339276. PubMed ID: 35033270 [TBL] [Abstract][Full Text] [Related]
24. Common materials, extraordinary behavior: An ultrasensitive and enantioselective strategy for D-Tryptophan recognition based on electrochemical Au@p-L-cysteine chiral interface. Deng Y; Zhang Z; Pang Y; Zhou X; Wang Y; Zhang Y; Yuan Y Anal Chim Acta; 2022 Sep; 1227():340331. PubMed ID: 36089298 [TBL] [Abstract][Full Text] [Related]
25. A selective electrochemical chiral interface based on a carboxymethyl-β-cyclodextrin/Pd@Au nanoparticles/3D reduced graphene oxide nanocomposite for tyrosine enantiomer recognition. Niu Q; Jin P; Huang Y; Fan L; Zhang C; Yang C; Dong C; Liang W; Shuang S Analyst; 2022 Feb; 147(5):880-888. PubMed ID: 35137747 [TBL] [Abstract][Full Text] [Related]
26. Electrochemical chiral sensor for recognition of amino acid enantiomers with cyclodextrin-based microporous organic networks. Zhang X; Wang F; Chen Z Anal Chim Acta; 2024 Aug; 1316():342879. PubMed ID: 38969416 [TBL] [Abstract][Full Text] [Related]
27. Novel Smart Polymer-Brush-Modified Magnetic Graphene Oxide for Highly Efficient Chiral Recognition and Enantioseparation of Tryptophan Enantiomers. Yang XR; Song XD; Zhu HY; Cheng CJ; Yu HR; Zhang HH ACS Appl Bio Mater; 2018 Oct; 1(4):1074-1083. PubMed ID: 34996147 [TBL] [Abstract][Full Text] [Related]
28. Facile and efficient electrochemical enantiomer recognition of phenylalanine using β-Cyclodextrin immobilized on reduced graphene oxide. Zaidi SA Biosens Bioelectron; 2017 Aug; 94():714-718. PubMed ID: 28395254 [TBL] [Abstract][Full Text] [Related]
30. Functionalized gold nanoparticles/reduced graphene oxide nanocomposites for ultrasensitive electrochemical sensing of mercury ions based on thymine-mercury-thymine structure. Wang N; Lin M; Dai H; Ma H Biosens Bioelectron; 2016 May; 79():320-6. PubMed ID: 26720921 [TBL] [Abstract][Full Text] [Related]
31. A highly efficient chiral sensing platform for tryptophan isomers based on a coordination self-assembly. Lei P; Zhou Y; Zhang G; Zhang Y; Zhang C; Hong S; Yang Y; Dong C; Shuang S Talanta; 2019 Apr; 195():306-312. PubMed ID: 30625547 [TBL] [Abstract][Full Text] [Related]
32. Chiral voltammetric sensor for tryptophan enantiomers by using a self-assembled multiwalled carbon nanotubes/polyaniline/sodium alginate composite. Niu X; Yang X; Li H; Shi Q; Wang K Chirality; 2021 May; 33(5):248-260. PubMed ID: 33675271 [TBL] [Abstract][Full Text] [Related]
33. Immobilization of 6-O-α-maltosyl-β-cyclodextrin on the surface of black phosphorus nanosheets for selective chiral recognition of tyrosine enantiomers. Zou J; Lan XW; Zhao GQ; Huang ZN; Liu YP; Yu JG Mikrochim Acta; 2020 Nov; 187(11):636. PubMed ID: 33141322 [TBL] [Abstract][Full Text] [Related]
34. Temperature-sensitive electrochemical recognition of tryptophan enantiomers based on β-cyclodextrin self-assembled on poly(L-glutamic acid). Tao Y; Dai J; Kong Y; Sha Y Anal Chem; 2014 Mar; 86(5):2633-9. PubMed ID: 24484527 [TBL] [Abstract][Full Text] [Related]
35. Preparation of reduced graphite oxide loaded with cobalt(II) and nitrogen co-doped carbon polyhedrons from a metal-organic framework (type ZIF-67), and its application to electrochemical determination of metronidazole. Chen H; Wu X; Zhao R; Zheng Z; Yuan Q; Dong Z; Gan W Mikrochim Acta; 2019 Aug; 186(9):623. PubMed ID: 31414250 [TBL] [Abstract][Full Text] [Related]
36. Sensitive electrochemical platform for trace determination of Pb Zou J; Zhong W; Gao F; Tu X; Chen S; Huang X; Wang X; Lu L; Yu Y Mikrochim Acta; 2020 Oct; 187(11):603. PubMed ID: 33037497 [TBL] [Abstract][Full Text] [Related]
37. An electrochemical daunorubicin sensor based on the use of platinum nanoparticles loaded onto a nanocomposite prepared from nitrogen decorated reduced graphene oxide and single-walled carbon nanotubes. Kong FY; Li RF; Yao L; Wang ZX; Lv WX; Wang W Mikrochim Acta; 2019 May; 186(5):321. PubMed ID: 31049702 [TBL] [Abstract][Full Text] [Related]
38. Amperometric hydrogen peroxide sensor using a glassy carbon electrode modified with a nanocomposite prepared from ferumoxytol and reduced graphene oxide decorated with platinum nanoparticles. Zhang Y; Duan Y; Shao Z; Chen C; Yang M; Lu G; Xu W; Liao X Mikrochim Acta; 2019 May; 186(6):386. PubMed ID: 31144114 [TBL] [Abstract][Full Text] [Related]
39. Sensitive electrochemical sensor based on poly(l-glutamic acid)/graphene oxide composite material for simultaneous detection of heavy metal ions. Yi W; He Z; Fei J; He X RSC Adv; 2019 May; 9(30):17325-17334. PubMed ID: 35519871 [TBL] [Abstract][Full Text] [Related]
40. Electrochemical enantioselective recognition of tryptophane enantiomers based on chiral ligand exchange. Chen Q; Zhou J; Han Q; Wang Y; Fu Y Colloids Surf B Biointerfaces; 2012 Apr; 92():130-5. PubMed ID: 22169472 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]