BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 31327582)

  • 1. Diverse functions of DNA glycosylases processing oxidative base lesions in brain.
    Scheffler K; Bjørås KØ; Bjørås M
    DNA Repair (Amst); 2019 Sep; 81():102665. PubMed ID: 31327582
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hide and seek: How do DNA glycosylases locate oxidatively damaged DNA bases amidst a sea of undamaged bases?
    Lee AJ; Wallace SS
    Free Radic Biol Med; 2017 Jun; 107():170-178. PubMed ID: 27865982
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidative DNA damage repair in mammalian cells: a new perspective.
    Hazra TK; Das A; Das S; Choudhury S; Kow YW; Roy R
    DNA Repair (Amst); 2007 Apr; 6(4):470-80. PubMed ID: 17116430
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Base-excision repair of oxidative DNA damage by DNA glycosylases.
    Dizdaroglu M
    Mutat Res; 2005 Dec; 591(1-2):45-59. PubMed ID: 16054172
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human DNA glycosylases involved in the repair of oxidatively damaged DNA.
    Ide H; Kotera M
    Biol Pharm Bull; 2004 Apr; 27(4):480-5. PubMed ID: 15056851
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Substrate specificities and excision kinetics of DNA glycosylases involved in base-excision repair of oxidative DNA damage.
    Dizdaroglu M
    Mutat Res; 2003 Oct; 531(1-2):109-26. PubMed ID: 14637249
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidized dNTPs and the OGG1 and MUTYH DNA glycosylases combine to induce CAG/CTG repeat instability.
    Cilli P; Ventura I; Minoprio A; Meccia E; Martire A; Wilson SH; Bignami M; Mazzei F
    Nucleic Acids Res; 2016 Jun; 44(11):5190-203. PubMed ID: 26980281
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Widespread distribution of DNA glycosylases removing oxidative DNA lesions in human and rodent brains.
    Rolseth V; Rundén-Pran E; Luna L; McMurray C; Bjørås M; Ottersen OP
    DNA Repair (Amst); 2008 Sep; 7(9):1578-88. PubMed ID: 18603019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of oxidized base damage repair by chromatin assembly factor 1 subunit A.
    Yang C; Sengupta S; Hegde PM; Mitra J; Jiang S; Holey B; Sarker AH; Tsai MS; Hegde ML; Mitra S
    Nucleic Acids Res; 2017 Jan; 45(2):739-748. PubMed ID: 27794043
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of Oxidative DNA Damage and the Role of DNA Glycosylases in Neurological Dysfunction.
    de Sousa MML; Ye J; Luna L; Hildrestrand G; Bjørås K; Scheffler K; Bjørås M
    Int J Mol Sci; 2021 Nov; 22(23):. PubMed ID: 34884729
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New paradigms in the repair of oxidative damage in human genome: mechanisms ensuring repair of mutagenic base lesions during replication and involvement of accessory proteins.
    Dutta A; Yang C; Sengupta S; Mitra S; Hegde ML
    Cell Mol Life Sci; 2015 May; 72(9):1679-98. PubMed ID: 25575562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aberrant base excision repair pathway of oxidatively damaged DNA: Implications for degenerative diseases.
    Talhaoui I; Matkarimov BT; Tchenio T; Zharkov DO; Saparbaev MK
    Free Radic Biol Med; 2017 Jun; 107():266-277. PubMed ID: 27890638
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crosstalk of DNA glycosylases with pathways other than base excision repair.
    Kovtun IV; McMurray CT
    DNA Repair (Amst); 2007 Apr; 6(4):517-29. PubMed ID: 17129768
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Specific Inhibition of NEIL-initiated repair of oxidized base damage in human genome by copper and iron: potential etiological linkage to neurodegenerative diseases.
    Hegde ML; Hegde PM; Holthauzen LM; Hazra TK; Rao KS; Mitra S
    J Biol Chem; 2010 Sep; 285(37):28812-25. PubMed ID: 20622253
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Base excision repair and lesion-dependent subpathways for repair of oxidative DNA damage.
    Svilar D; Goellner EM; Almeida KH; Sobol RW
    Antioxid Redox Signal; 2011 Jun; 14(12):2491-507. PubMed ID: 20649466
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidative Damage in Sporadic Colorectal Cancer: Molecular Mapping of Base Excision Repair Glycosylases in Colorectal Cancer Patients.
    Vodicka P; Urbanova M; Makovicky P; Tomasova K; Kroupa M; Stetina R; Opattova A; Kostovcikova K; Siskova A; Schneiderova M; Vymetalkova V; Vodickova L
    Int J Mol Sci; 2020 Apr; 21(7):. PubMed ID: 32252452
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellular response to endogenous DNA damage: DNA base modifications in gene expression regulation.
    Bordin DL; Lirussi L; Nilsen H
    DNA Repair (Amst); 2021 Mar; 99():103051. PubMed ID: 33540225
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emerging Roles of DNA Glycosylases and the Base Excision Repair Pathway.
    Mullins EA; Rodriguez AA; Bradley NP; Eichman BF
    Trends Biochem Sci; 2019 Sep; 44(9):765-781. PubMed ID: 31078398
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Base excision repair].
    Sliwiński T; Błasiak J
    Postepy Biochem; 2005; 51(2):120-9. PubMed ID: 16209349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biological significance of the defense mechanisms against oxidative damage in nucleic acids caused by reactive oxygen species: from mitochondria to nuclei.
    Nakabeppu Y; Tsuchimoto D; Ichinoe A; Ohno M; Ide Y; Hirano S; Yoshimura D; Tominaga Y; Furuichi M; Sakumi K
    Ann N Y Acad Sci; 2004 Apr; 1011():101-11. PubMed ID: 15126288
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.