These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 31327880)

  • 1. Modeling of slightly-compressible isentropic flows and its compressibility effects on fluid-structure interactions.
    Zhang LT; Krane MH; Yu F
    Comput Fluids; 2019 Mar; 182():108-117. PubMed ID: 31327880
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fully-coupled aeroelastic simulation with fluid compressibility - For application to vocal fold vibration.
    Yang J; Wang X; Krane M; Zhang LT
    Comput Methods Appl Mech Eng; 2017 Mar; 315():584-606. PubMed ID: 29527067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Compressibility effects in Rayleigh-Taylor instability-induced flows.
    Gauthier S; Le Creurer B
    Philos Trans A Math Phys Eng Sci; 2010 Apr; 368(1916):1681-704. PubMed ID: 20211880
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Artificial compressibility method for strongly anisothermal low Mach number flows.
    Dupuy D; Toutant A; Bataille F
    Phys Rev E; 2021 Jan; 103(1-1):013314. PubMed ID: 33601557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Helmholtz's decomposition for compressible flows and its application to computational aeroacoustics.
    Schoder S; Roppert K; Kaltenbacher M
    SN Partial Differ Equ Appl; 2020; 1(6):46. PubMed ID: 33184614
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acoustically-coupled flow-induced vibration of a computational vocal fold model.
    Daily DJ; Thomson SL
    Comput Struct; 2013 Jan; 116():50-58. PubMed ID: 23585700
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aeroacoustics of T-junction merging flow.
    Lam GC; Leung RC; Tang SK
    J Acoust Soc Am; 2013 Feb; 133(2):697-708. PubMed ID: 23363089
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A sharp interface Lagrangian-Eulerian method for flexible-body fluid-structure interaction.
    Kolahdouz EM; Wells DR; Rossi S; Aycock KI; Craven BA; Griffith BE
    J Comput Phys; 2023 Sep; 488():. PubMed ID: 37214277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arbitrary Lagrangian-Eulerian unstructured finite-volume lattice-Boltzmann method for computing two-dimensional compressible inviscid flows over moving bodies.
    Hejranfar K; Hashemi Nasab H; Azampour MH
    Phys Rev E; 2020 Feb; 101(2-1):023308. PubMed ID: 32168620
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluid mechanics in fluids at rest.
    Brenner H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 2):016307. PubMed ID: 23005525
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A passive Stokes flow rectifier for Newtonian fluids.
    Mehboudi A; Yeom J
    Sci Rep; 2021 May; 11(1):10182. PubMed ID: 33986400
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Motion of a slightly compressible fluid.
    Ebin DG
    Proc Natl Acad Sci U S A; 1975 Feb; 72(2):539-42. PubMed ID: 16592220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vibro-acoustics response of a simplified glass window excited by the turbulent wake of a quarter-spherocylinder body.
    Yao HD; Davidson L
    J Acoust Soc Am; 2019 May; 145(5):3163. PubMed ID: 31153304
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of aerodynamic characteristics of a coupled fluid-structure system using generalized Bernoulli's principle: An application to vocal folds vibration.
    Zhang LT; Yang J
    J Coupled Syst Multiscale Dyn; 2016 Dec; 4(4):241-250. PubMed ID: 29527541
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Hybrid Biphasic Mixture Formulation for Modeling Dynamics in Porous Deformable Biological Tissues.
    Shim JJ; Ateshian GA
    Arch Appl Mech; 2022 Feb; 92(2):491-511. PubMed ID: 35330673
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Finite Element Implementation of Biphasic-Fluid Structure Interactions in febio.
    Shim JJ; Maas SA; Weiss JA; Ateshian GA
    J Biomech Eng; 2021 Sep; 143(9):. PubMed ID: 33764435
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational aeroacoustics of phonation, part I: Computational methods and sound generation mechanisms.
    Zhao W; Zhang C; Frankel SH; Mongeau L
    J Acoust Soc Am; 2002 Nov; 112(5 Pt 1):2134-46. PubMed ID: 12430825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MFC: An open-source high-order multi-component, multi-phase, and multi-scale compressible flow solver.
    Bryngelson SH; Schmidmayer K; Coralic V; Meng JC; Maeda K; Colonius T
    Comput Phys Commun; 2021 Sep; 266():. PubMed ID: 34168375
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bulk and shear viscosities in lattice Boltzmann equations.
    Dellar PJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Sep; 64(3 Pt 1):031203. PubMed ID: 11580323
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microscale Gaseous Slip Flow in the Insect Trachea and Tracheoles.
    Simelane SM; Abelman S; Duncan FD
    Acta Biotheor; 2017 Sep; 65(3):211-231. PubMed ID: 28695410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.