These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 31327880)

  • 61. Acoustic radiation force analysis using finite difference time domain method.
    Grinenko A; Wilcox PD; Courtney CR; Drinkwater BW
    J Acoust Soc Am; 2012 May; 131(5):3664-70. PubMed ID: 22559343
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Thermodynamic theory of incompressible hydrodynamics.
    Ansumali S; Karlin IV; Ottinger HC
    Phys Rev Lett; 2005 Mar; 94(8):080602. PubMed ID: 15783873
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Modeling the initial-volume dependent approximate compressibility of porcine liver tissues using a novel volumetric strain energy model.
    Wang B; Liu J; Li W; Zhou Z
    J Biomech; 2020 Aug; 109():109901. PubMed ID: 32807328
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Modeling and Mathematical Investigation of Blood-Based Flow of Compressible Rate Type Fluid with Compressibility Effects in a Microchannel.
    Guedri K; Lashin MMA; Abbasi A; Khan SU; Tag-ElDin ESM; Khan MI; Khalil F; Galal AM
    Micromachines (Basel); 2022 Oct; 13(10):. PubMed ID: 36296103
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Simplified method for simulation of incompressible viscous flows inspired by the lattice Boltzmann method.
    Huang JJ
    Phys Rev E; 2021 May; 103(5-1):053311. PubMed ID: 34134207
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Numerical simulation of turbulence transition and sound radiation for flow through a rigid glottal model.
    Suh J; Frankel SH
    J Acoust Soc Am; 2007 Jun; 121(6):3728-39. PubMed ID: 17552723
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Lattice Boltzmann model for weakly compressible flows.
    Kolluru PK; Atif M; Namburi M; Ansumali S
    Phys Rev E; 2020 Jan; 101(1-1):013309. PubMed ID: 32069676
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Multi-particle collision dynamics with a non-ideal equation of state. I.
    Zantop AW; Stark H
    J Chem Phys; 2021 Jan; 154(2):024105. PubMed ID: 33445899
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The Perfectly Matched Layer absorbing boundary for fluid-structure interactions using the Immersed Finite Element Method.
    Yang J; Yu F; Krane M; Zhang LT
    J Fluids Struct; 2018 Jan; 76():135-152. PubMed ID: 29151673
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Three-dimensional lattice Boltzmann model for compressible flows.
    Sun C; Hsu AT
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jul; 68(1 Pt 2):016303. PubMed ID: 12935242
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Viscous compressible hydrodynamics at planes, spheres and cylinders with finite surface slip.
    Erbaş A; Podgornik R; Netz RR
    Eur Phys J E Soft Matter; 2010 Jun; 32(2):147-64. PubMed ID: 20632199
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Fixation probabilities in weakly compressible fluid flows.
    Plummer A; Benzi R; Nelson DR; Toschi F
    Proc Natl Acad Sci U S A; 2019 Jan; 116(2):373-378. PubMed ID: 30587586
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A hybrid approach to the computational aeroacoustics of human voice production.
    Šidlof P; Zörner S; Hüppe A
    Biomech Model Mechanobiol; 2015 Jun; 14(3):473-88. PubMed ID: 25288479
    [TBL] [Abstract][Full Text] [Related]  

  • 74. A Formulation for Fluid-Structure Interactions in febio Using Mixture Theory.
    Shim JJ; Maas SA; Weiss JA; Ateshian GA
    J Biomech Eng; 2019 May; 141(5):0510101-05101015. PubMed ID: 30835271
    [TBL] [Abstract][Full Text] [Related]  

  • 75. On the Compressibility of Arterial Tissue.
    Nolan DR; McGarry JP
    Ann Biomed Eng; 2016 Apr; 44(4):993-1007. PubMed ID: 26297340
    [TBL] [Abstract][Full Text] [Related]  

  • 76. On compressible and piezo-viscous flow in thin porous media.
    Pérez-Ràfols F; Wall P; Almqvist A
    Proc Math Phys Eng Sci; 2018 Jan; 474(2209):20170601. PubMed ID: 29434510
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Bandgap characteristics of phononic crystals in steady and unsteady flows.
    Oh TS; Jeon W
    J Acoust Soc Am; 2020 Sep; 148(3):1181. PubMed ID: 33003880
    [TBL] [Abstract][Full Text] [Related]  

  • 78. A Hybrid Reactive Multiphasic Mixture With a Compressible Fluid Solvent.
    Shim JJ; Ateshian GA
    J Biomech Eng; 2022 Jan; 144(1):. PubMed ID: 34318318
    [TBL] [Abstract][Full Text] [Related]  

  • 79. One-dimensional model and solutions for creeping gas flows in the approximation of uniform pressure.
    Vedernikov A; Balapanov D
    Phys Rev E; 2016 Nov; 94(5-1):053121. PubMed ID: 27967035
    [TBL] [Abstract][Full Text] [Related]  

  • 80.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.