BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 31328168)

  • 1. The prostate cancer risk variant rs55958994 regulates multiple gene expression through extreme long-range chromatin interaction to control tumor progression.
    Qian Y; Zhang L; Cai M; Li H; Xu H; Yang H; Zhao Z; Rhie SK; Farnham PJ; Shi J; Lu W
    Sci Adv; 2019 Jul; 5(7):eaaw6710. PubMed ID: 31328168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification and validation of regulatory SNPs that modulate transcription factor chromatin binding and gene expression in prostate cancer.
    Jin HJ; Jung S; DebRoy AR; Davuluri RV
    Oncotarget; 2016 Aug; 7(34):54616-54626. PubMed ID: 27409348
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A functional variant at a prostate cancer predisposition locus at 8q24 is associated with PVT1 expression.
    Meyer KB; Maia AT; O'Reilly M; Ghoussaini M; Prathalingam R; Porter-Gill P; Ambs S; Prokunina-Olsson L; Carroll J; Ponder BA
    PLoS Genet; 2011 Jul; 7(7):e1002165. PubMed ID: 21814516
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanistic insights into genetic susceptibility to prostate cancer.
    Tian P; Zhong M; Wei GH
    Cancer Lett; 2021 Dec; 522():155-163. PubMed ID: 34560228
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrative functional genomics identifies an enhancer looping to the SOX9 gene disrupted by the 17q24.3 prostate cancer risk locus.
    Zhang X; Cowper-Sal lari R; Bailey SD; Moore JH; Lupien M
    Genome Res; 2012 Aug; 22(8):1437-46. PubMed ID: 22665440
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A prostate cancer susceptibility allele at 6q22 increases RFX6 expression by modulating HOXB13 chromatin binding.
    Huang Q; Whitington T; Gao P; Lindberg JF; Yang Y; Sun J; Väisänen MR; Szulkin R; Annala M; Yan J; Egevad LA; Zhang K; Lin R; Jolma A; Nykter M; Manninen A; Wiklund F; Vaarala MH; Visakorpi T; Xu J; Taipale J; Wei GH
    Nat Genet; 2014 Feb; 46(2):126-35. PubMed ID: 24390282
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPR-mediated deletion of prostate cancer risk-associated CTCF loop anchors identifies repressive chromatin loops.
    Guo Y; Perez AA; Hazelett DJ; Coetzee GA; Rhie SK; Farnham PJ
    Genome Biol; 2018 Oct; 19(1):160. PubMed ID: 30296942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comprehensive functional annotation of 77 prostate cancer risk loci.
    Hazelett DJ; Rhie SK; Gaddis M; Yan C; Lakeland DL; Coetzee SG; ; ; Henderson BE; Noushmehr H; Cozen W; Kote-Jarai Z; Eeles RA; Easton DF; Haiman CA; Lu W; Farnham PJ; Coetzee GA
    PLoS Genet; 2014 Jan; 10(1):e1004102. PubMed ID: 24497837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of long noncoding RNAs by risk SNPs underlying genetic predispositions to prostate cancer.
    Guo H; Ahmed M; Zhang F; Yao CQ; Li S; Liang Y; Hua J; Soares F; Sun Y; Langstein J; Li Y; Poon C; Bailey SD; Desai K; Fei T; Li Q; Sendorek DH; Fraser M; Prensner JR; Pugh TJ; Pomerantz M; Bristow RG; Lupien M; Feng FY; Boutros PC; Freedman ML; Walsh MJ; He HH
    Nat Genet; 2016 Oct; 48(10):1142-50. PubMed ID: 27526323
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Risk SNP-Mediated Promoter-Enhancer Switching Drives Prostate Cancer through lncRNA PCAT19.
    Hua JT; Ahmed M; Guo H; Zhang Y; Chen S; Soares F; Lu J; Zhou S; Wang M; Li H; Larson NB; McDonnell SK; Patel PS; Liang Y; Yao CQ; van der Kwast T; Lupien M; Feng FY; Zoubeidi A; Tsao MS; Thibodeau SN; Boutros PC; He HH
    Cell; 2018 Jul; 174(3):564-575.e18. PubMed ID: 30033362
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Upregulation of c-MYC in cis through a large chromatin loop linked to a cancer risk-associated single-nucleotide polymorphism in colorectal cancer cells.
    Wright JB; Brown SJ; Cole MD
    Mol Cell Biol; 2010 Mar; 30(6):1411-20. PubMed ID: 20065031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple Functional Variants at 13q14 Risk Locus for Osteoporosis Regulate RANKL Expression Through Long-Range Super-Enhancer.
    Zhu DL; Chen XF; Hu WX; Dong SS; Lu BJ; Rong Y; Chen YX; Chen H; Thynn HN; Wang NN; Guo Y; Yang TL
    J Bone Miner Res; 2018 Jul; 33(7):1335-1346. PubMed ID: 29528523
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple functional variants in long-range enhancer elements contribute to the risk of SNP rs965513 in thyroid cancer.
    He H; Li W; Liyanarachchi S; Srinivas M; Wang Y; Akagi K; Wang Y; Wu D; Wang Q; Jin V; Symer DE; Shen R; Phay J; Nagy R; de la Chapelle A
    Proc Natl Acad Sci U S A; 2015 May; 112(19):6128-33. PubMed ID: 25918370
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromatin interactions and candidate genes at ten prostate cancer risk loci.
    Du M; Tillmans L; Gao J; Gao P; Yuan T; Dittmar RL; Song W; Yang Y; Sahr N; Wang T; Wei GH; Thibodeau SN; Wang L
    Sci Rep; 2016 Mar; 6():23202. PubMed ID: 26979803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Networks of intergenic long-range enhancers and snpRNAs drive castration-resistant phenotype of prostate cancer and contribute to pathogenesis of multiple common human disorders.
    Glinskii AB; Ma S; Ma J; Grant D; Lim CU; Guest I; Sell S; Buttyan R; Glinsky GV
    Cell Cycle; 2011 Oct; 10(20):3571-97. PubMed ID: 22067658
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A rare variant of African ancestry activates 8q24 lncRNA hub by modulating cancer associated enhancer.
    Walavalkar K; Saravanan B; Singh AK; Jayani RS; Nair A; Farooq U; Islam Z; Soota D; Mann R; Shivaprasad PV; Freedman ML; Sabarinathan R; Haiman CA; Notani D
    Nat Commun; 2020 Jul; 11(1):3598. PubMed ID: 32680982
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The SNP of rs6854845 suppresses transcription via the DNA looping structure alteration of super-enhancer in colon cells.
    Cong Z; Li Q; Yang Y; Guo X; Cui L; You T
    Biochem Biophys Res Commun; 2019 Jun; 514(3):734-741. PubMed ID: 31078271
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancer Dysfunction in 3D Genome and Disease.
    Xia JH; Wei GH
    Cells; 2019 Oct; 8(10):. PubMed ID: 31635067
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deletion of the olfactomedin 4 gene is associated with progression of human prostate cancer.
    Li H; Rodriguez-Canales J; Liu W; Zhu J; Hanson JC; Pack S; Zhuang Z; Emmert-Buck MR; Rodgers GP
    Am J Pathol; 2013 Oct; 183(4):1329-38. PubMed ID: 24070418
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mapping genetic variability in mature miRNAs and miRNA binding sites in prostate cancer.
    Lee B; Li JL; Marchica J; Mercola M; Patel V; Perera RJ
    J Hum Genet; 2021 Nov; 66(11):1127-1137. PubMed ID: 34099864
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.