These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 31328402)

  • 1. Molecular Mass-Dependent Resorption and Bone Regeneration of 3D Printed PPF Scaffolds in a Critical-Sized Rat Cranial Defect Model.
    Nettleton K; Luong D; Kleinfehn AP; Savariau L; Premanandan C; Becker ML
    Adv Healthc Mater; 2019 Sep; 8(17):e1900646. PubMed ID: 31328402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Poly(propylene fumarate)-based materials: Synthesis, functionalization, properties, device fabrication and biomedical applications.
    Cai Z; Wan Y; Becker ML; Long YZ; Dean D
    Biomaterials; 2019 Jul; 208():45-71. PubMed ID: 30991217
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of calcium phosphate coating and rhBMP-2 on bone regeneration in rabbit calvaria using poly(propylene fumarate) scaffolds.
    Dadsetan M; Guda T; Runge MB; Mijares D; LeGeros RZ; LeGeros JP; Silliman DT; Lu L; Wenke JC; Brown Baer PR; Yaszemski MJ
    Acta Biomater; 2015 May; 18():9-20. PubMed ID: 25575855
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extrusion-based 3D printing of poly(propylene fumarate) scaffolds with hydroxyapatite gradients.
    Trachtenberg JE; Placone JK; Smith BT; Fisher JP; Mikos AG
    J Biomater Sci Polym Ed; 2017 Apr; 28(6):532-554. PubMed ID: 28125380
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluating changes in structure and cytotoxicity during in vitro degradation of three-dimensional printed scaffolds.
    Wang MO; Piard CM; Melchiorri A; Dreher ML; Fisher JP
    Tissue Eng Part A; 2015 May; 21(9-10):1642-53. PubMed ID: 25627168
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of photocrosslinkable resin components and 3D printing process parameters.
    Guerra AJ; Lammel-Lindemann J; Katko A; Kleinfehn A; Rodriguez CA; Catalani LH; Becker ML; Ciurana J; Dean D
    Acta Biomater; 2019 Oct; 97():154-161. PubMed ID: 31352105
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D printed poly(ε-caprolactone) scaffolds modified with hydroxyapatite and poly(propylene fumarate) and their effects on the healing of rabbit femur defects.
    Buyuksungur S; Endogan Tanir T; Buyuksungur A; Bektas EI; Torun Kose G; Yucel D; Beyzadeoglu T; Cetinkaya E; Yenigun C; Tönük E; Hasirci V; Hasirci N
    Biomater Sci; 2017 Sep; 5(10):2144-2158. PubMed ID: 28880313
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of arginine-glycine-aspartate-immobilized 3D printed poly(propylene fumarate) scaffolds for cartilage tissue engineering.
    Ahn CB; Kim Y; Park SJ; Hwang Y; Lee JW
    J Biomater Sci Polym Ed; 2018; 29(7-9):917-931. PubMed ID: 28929935
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Chemical and Physical Properties on the In Vitro Degradation of 3D Printed High Resolution Poly(propylene fumarate) Scaffolds.
    Walker JM; Bodamer E; Krebs O; Luo Y; Kleinfehn A; Becker ML; Dean D
    Biomacromolecules; 2017 Apr; 18(4):1419-1425. PubMed ID: 28291335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biodegradable composite scaffolds incorporating an intramedullary rod and delivering bone morphogenetic protein-2 for stabilization and bone regeneration in segmental long bone defects.
    Henslee AM; Spicer PP; Yoon DM; Nair MB; Meretoja VV; Witherel KE; Jansen JA; Mikos AG; Kasper FK
    Acta Biomater; 2011 Oct; 7(10):3627-37. PubMed ID: 21757034
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Digital micromirror device (DMD)-based 3D printing of poly(propylene fumarate) scaffolds.
    Mott EJ; Busso M; Luo X; Dolder C; Wang MO; Fisher JP; Dean D
    Mater Sci Eng C Mater Biol Appl; 2016 Apr; 61():301-11. PubMed ID: 26838854
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D Printing of Poly(propylene fumarate) Oligomers: Evaluation of Resin Viscosity, Printing Characteristics and Mechanical Properties.
    Luo Y; Le Fer G; Dean D; Becker ML
    Biomacromolecules; 2019 Apr; 20(4):1699-1708. PubMed ID: 30807696
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-Dimension-Printed Porous Poly(Propylene Fumarate) Scaffolds with Delayed rhBMP-2 Release for Anterior Cruciate Ligament Graft Fixation.
    Parry JA; Olthof MG; Shogren KL; Dadsetan M; Van Wijnen A; Yaszemski M; Kakar S
    Tissue Eng Part A; 2017 Apr; 23(7-8):359-365. PubMed ID: 28081675
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo bone biocompatibility and degradation of porous fumarate-based polymer/alumoxane nanocomposites for bone tissue engineering.
    Mistry AS; Pham QP; Schouten C; Yeh T; Christenson EM; Mikos AG; Jansen JA
    J Biomed Mater Res A; 2010 Feb; 92(2):451-62. PubMed ID: 19191316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulating Bioglass Concentration in 3D Printed Poly(propylene fumarate) Scaffolds for Post-Printing Functionalization with Bioactive Functional Groups.
    Kleinfehn AP; Lammel Lindemann JA; Razvi A; Philip P; Richardson K; Nettleton K; Becker ML; Dean D
    Biomacromolecules; 2019 Dec; 20(12):4345-4352. PubMed ID: 31661252
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual-functional 3D-printed composite scaffold for inhibiting bacterial infection and promoting bone regeneration in infected bone defect models.
    Yang Y; Chu L; Yang S; Zhang H; Qin L; Guillaume O; Eglin D; Richards RG; Tang T
    Acta Biomater; 2018 Oct; 79():265-275. PubMed ID: 30125670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bone regeneration by means of a three-dimensional printed scaffold in a rat cranial defect.
    Kwon DY; Park JH; Jang SH; Park JY; Jang JW; Min BH; Kim WD; Lee HB; Lee J; Kim MS
    J Tissue Eng Regen Med; 2018 Feb; 12(2):516-528. PubMed ID: 28763610
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of 3D bioactive glass scaffolds and BMP-2 on bone formation in rat femoral critical size defects and adjacent bones.
    Liu WC; Robu IS; Patel R; Leu MC; Velez M; Chu TM
    Biomed Mater; 2014 Aug; 9(4):045013. PubMed ID: 25065552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bone formation in transforming growth factor beta-1-coated porous poly(propylene fumarate) scaffolds.
    Vehof JW; Fisher JP; Dean D; van der Waerden JP; Spauwen PH; Mikos AG; Jansen JA
    J Biomed Mater Res; 2002 May; 60(2):241-51. PubMed ID: 11857430
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluating 3D-printed biomaterials as scaffolds for vascularized bone tissue engineering.
    Wang MO; Vorwald CE; Dreher ML; Mott EJ; Cheng MH; Cinar A; Mehdizadeh H; Somo S; Dean D; Brey EM; Fisher JP
    Adv Mater; 2015 Jan; 27(1):138-44. PubMed ID: 25387454
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.