These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 31328483)

  • 21. Enhancement of 2-keto-gulonic acid yield by serial subcultivation of co-cultures of Bacillus cereus and Ketogulonicigenium vulgare.
    Zou Y; Hu M; Lv Y; Wang Y; Song H; Yuan YJ
    Bioresour Technol; 2013 Mar; 132():370-3. PubMed ID: 23218663
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Optimization of the fermentation conditions for 5-keto-D-gluconic acid production].
    Li B; Pan H; Sun W; Cheng Y; Xie Z; Zhang J
    Sheng Wu Gong Cheng Xue Bao; 2014 Sep; 30(9):1486-90. PubMed ID: 25720164
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genetic engineering of Ketogulonigenium vulgare for enhanced production of 2-keto-L-gulonic acid.
    Cai L; Yuan MQ; Li ZJ; Chen JC; Chen GQ
    J Biotechnol; 2012 Jan; 157(2):320-5. PubMed ID: 22192513
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optimized synthesis of L-sorbose by C(5)-dehydrogenation of D-sorbitol with Gluconobacter oxydans.
    De Wulf P; Soetaert W; Vandamme EJ
    Biotechnol Bioeng; 2000 Aug; 69(3):339-43. PubMed ID: 10861414
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High-yield 5-keto-D-gluconic acid formation is mediated by soluble and membrane-bound gluconate-5-dehydrogenases of Gluconobacter oxydans.
    Merfort M; Herrmann U; Bringer-Meyer S; Sahm H
    Appl Microbiol Biotechnol; 2006 Nov; 73(2):443-51. PubMed ID: 16820953
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Overexpression of membrane-bound gluconate-2-dehydrogenase to enhance the production of 2-keto-D-gluconic acid by Gluconobacter oxydans.
    Li K; Mao X; Liu L; Lin J; Sun M; Wei D; Yang S
    Microb Cell Fact; 2016 Jul; 15(1):121. PubMed ID: 27392695
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhanced 2-keto-L-gulonic acid production by a mixed culture of Ketogulonicigenium vulgare and Bacillus megaterium using three-stage temperature control strategy.
    Yang W; Sun H; Dong D; Ma S; Mandlaa ; Wang Z; Xu H
    Braz J Microbiol; 2021 Mar; 52(1):257-265. PubMed ID: 33145708
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Gelatin enhances 2-keto-L-gulonic acid production based on Ketogulonigenium vulgare genome annotation.
    Liu L; Chen K; Zhang J; Liu J; Chen J
    J Biotechnol; 2011 Dec; 156(3):182-7. PubMed ID: 21924300
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Glutathione enhances 2-keto-l-gulonic acid production based on Ketogulonicigenium vulgare model iWZ663.
    Huang Z; Zou W; Liu J; Liu L
    J Biotechnol; 2013 Apr; 164(4):454-60. PubMed ID: 23376843
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Directional enhancement of 2-keto-gluconic acid production from enzymatic hydrolysate by acetic acid-mediated bio-oxidation with Gluconobacter oxydans.
    Dai L; Jiang W; Jia R; Zhou X; Xu Y
    Bioresour Technol; 2022 Mar; 348():126811. PubMed ID: 35131459
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Effect of Bacillus megaterium on Gluconobacter oxydans in mixed culture].
    Feng S; Zhang Z; Zhang C; Zhang Z
    Ying Yong Sheng Tai Xue Bao; 2000 Feb; 11(1):119-22. PubMed ID: 11766567
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modification of the membrane-bound glucose oxidation system in Gluconobacter oxydans significantly increases gluconate and 5-keto-D-gluconic acid accumulation.
    Merfort M; Herrmann U; Ha SW; Elfari M; Bringer-Meyer S; Görisch H; Sahm H
    Biotechnol J; 2006 May; 1(5):556-63. PubMed ID: 16892291
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Continuous co-production of biomass and bio-oxidized metabolite (sorbose) using Gluconobacter oxydans in a high-oxygen tension bioreactor.
    Zhou X; Hua X; Zhou X; Xu Y; Zhang W
    Bioresour Technol; 2019 Apr; 277():221-224. PubMed ID: 30658939
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High cell density fermentation of Gluconobacter oxydans DSM 2003 for glycolic acid production.
    Wei G; Yang X; Gan T; Zhou W; Lin J; Wei D
    J Ind Microbiol Biotechnol; 2009 Aug; 36(8):1029-34. PubMed ID: 19434434
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A plate method for rapid screening of Ketogulonicigenium vulgare mutants for enhanced 2-keto-l-gulonic acid production.
    Yang W; Han L; Mandlaa M; Zhang H; Zhang Z; Xu H
    Braz J Microbiol; 2017; 48(3):397-402. PubMed ID: 28292630
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synergistic improvement of PQQ-dependent D-sorbitol dehydrogenase activity from Gluconobacter oxydans for the biosynthesis of miglitol precursor 6-(N-hydroxyethyl)-amino-6-deoxy-α-L-sorbofuranose.
    Ke X; Pan-Hong Y; Hu ZC; Chen L; Sun XQ; Zheng YG
    J Biotechnol; 2019 Jul; 300():55-62. PubMed ID: 31100333
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Efficient Production of 2,5-Diketo-D-gluconic Acid by Reducing Browning Levels During
    Li G; Shan X; Zeng W; Yu S; Zhang G; Chen J; Zhou J
    Front Bioeng Biotechnol; 2022; 10():918277. PubMed ID: 35875491
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification of Gradient Promoters of
    Chen Y; Liu L; Yu S; Li J; Zhou J; Chen J
    Front Bioeng Biotechnol; 2021; 9():673844. PubMed ID: 33898410
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Metabolomic analysis of the positive effects on Ketogulonigenium vulgare growth and 2-keto-L-gulonic acid production by reduced glutathione.
    Zhou J; Yi H; Wang L; Zhang W; Yuan YJ
    OMICS; 2012; 16(7-8):387-96. PubMed ID: 22734896
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biotransformation of glucose to 5-keto-D-gluconic acid by recombinant Gluconobacter oxydans DSM 2343.
    Herrmann U; Merfort M; Jeude M; Bringer-Meyer S; Sahm H
    Appl Microbiol Biotechnol; 2004 Mar; 64(1):86-90. PubMed ID: 14564486
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.