These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 31328909)

  • 1. Designing Transparent Micro/Nano Re-Entrant-Coordinated Superamphiphobic Surfaces with Ultralow Solid/Liquid Adhesion.
    Li X; Wang D; Tan Y; Yang J; Deng X
    ACS Appl Mater Interfaces; 2019 Aug; 11(32):29458-29465. PubMed ID: 31328909
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Designing Re-Entrant Geometry: Construction of a Superamphiphobic Surface with Large-Sized Particles.
    Wang T; Lv C; Ji L; He X; Wang S
    ACS Appl Mater Interfaces; 2020 Oct; 12(43):49155-49164. PubMed ID: 32915528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly transparent superamphiphobic surfaces by elaborate microstructure regulation.
    Zhang J; Yu B; Wei Q; Li B; Li L; Yang Y
    J Colloid Interface Sci; 2019 Oct; 554():250-259. PubMed ID: 31301525
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomimetic Multi-Functional Superamphiphobic FOTS-TiO
    Chen L; Guo Z; Liu W
    ACS Appl Mater Interfaces; 2016 Oct; 8(40):27188-27198. PubMed ID: 27652905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large-Area Preparation of Robust and Transparent Superomniphobic Polymer Films.
    Wu Y; Zeng J; Si Y; Chen M; Wu L
    ACS Nano; 2018 Oct; 12(10):10338-10346. PubMed ID: 30299933
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental and fluid flow simulation studies of laser-electrochemical hybrid manufacturing of micro-nano symbiotic superamphiphobic surfaces.
    Liu Y; Liu X; Zhang Z; Lu J; Wang Y; Xu K; Zhu H; Wang B; Lin L; Xue W
    J Chem Phys; 2023 Sep; 159(11):. PubMed ID: 37712795
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Applicable Superamphiphobic Ni/Cu Surface with High Liquid Repellency Enabled by the Electrochemical-Deposited Dual-Scale Structure.
    Wang T; Cai J; Wu Y; Hang T; Hu A; Ling H; Li M
    ACS Appl Mater Interfaces; 2019 Mar; 11(12):11106-11111. PubMed ID: 30855937
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D mossy structures of zinc filaments: A facile strategy for superamphiphobic surface design.
    Zhi S; Wang G; Zeng Z; Zhu L; Liu Z; Zhang D; Xu K; Xue Q
    J Colloid Interface Sci; 2018 Sep; 526():106-113. PubMed ID: 29723791
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrafast Processing of Hierarchical Nanotexture for a Transparent Superamphiphobic Coating with Extremely Low Roll-Off Angle and High Impalement Pressure.
    Teisala H; Geyer F; Haapanen J; Juuti P; Mäkelä JM; Vollmer D; Butt HJ
    Adv Mater; 2018 Apr; 30(14):e1706529. PubMed ID: 29484716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microdroplet Contaminants: When and Why Superamphiphobic Surfaces Are Not Self-Cleaning.
    Wong WSY; Corrales TP; Naga A; Baumli P; Kaltbeitzel A; Kappl M; Papadopoulos P; Vollmer D; Butt HJ
    ACS Nano; 2020 Apr; 14(4):3836-3846. PubMed ID: 32096971
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Superamphiphobic Cu/CuO Micropillar Arrays with High Repellency Towards Liquids of Extremely High Viscosity and Low Surface Tension.
    Zhu Q; Li B; Li S; Luo G; Zheng B; Zhang J
    Sci Rep; 2019 Jan; 9(1):702. PubMed ID: 30679771
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multistimuli-Responsive Microstructured Superamphiphobic Surfaces with Large-Range, Reversible Switchable Wettability for Oil.
    Wang H; Zhang Z; Wang Z; Liang Y; Cui Z; Zhao J; Li X; Ren L
    ACS Appl Mater Interfaces; 2019 Aug; 11(31):28478-28486. PubMed ID: 31307191
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facile one-step photolithographic method for engineering hierarchically nano/microstructured transparent superamphiphobic surfaces.
    Li T; Paliy M; Wang X; Kobe B; Lau WM; Yang J
    ACS Appl Mater Interfaces; 2015 May; 7(20):10988-92. PubMed ID: 25942618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Superoleophobic Slippery Lubricant-Infused Surfaces: Combining Two Extremes in the Same Surface.
    Dong Z; Schumann MF; Hokkanen MJ; Chang B; Welle A; Zhou Q; Ras RHA; Xu Z; Wegener M; Levkin PA
    Adv Mater; 2018 Nov; 30(45):e1803890. PubMed ID: 30160319
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface-Independent Hierarchical Coatings with Superamphiphobic Properties.
    Schlaich C; Cuellar Camacho L; Yu L; Achazi K; Wei Q; Haag R
    ACS Appl Mater Interfaces; 2016 Oct; 8(42):29117-29127. PubMed ID: 27714994
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface topographies of biomimetic superamphiphobic materials: design criteria, fabrication and performance.
    Gou X; Guo Z
    Adv Colloid Interface Sci; 2019 Jul; 269():87-121. PubMed ID: 31059923
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Durable, Transparent, and Hot Liquid Repelling Superamphiphobic Coatings from Polysiloxane-Modified Multiwalled Carbon Nanotubes.
    Zhang J; Yu B; Gao Z; Li B; Zhao X
    Langmuir; 2017 Jan; 33(2):510-518. PubMed ID: 28025880
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Omnidirectional Self-Assembly of Transparent Superoleophobic Nanotextures.
    Wong WS; Liu G; Nasiri N; Hao C; Wang Z; Tricoli A
    ACS Nano; 2017 Jan; 11(1):587-596. PubMed ID: 28027438
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clay-based superamphiphobic coatings with low sliding angles for viscous liquids.
    Zhu Q; Li B; Li S; Luo G; Zheng B; Zhang J
    J Colloid Interface Sci; 2019 Mar; 540():228-236. PubMed ID: 30641400
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of robust superamphiphobic surfaces with enlarged area fractions: the considerable role of Laplace pressure in dynamics of contact lines.
    Li Y; He Y; Li J; Lu C; Ge H; Xu Z
    Phys Chem Chem Phys; 2022 Apr; 24(16):9308-9315. PubMed ID: 35383808
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.