These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 31329059)
1. Delayed dynamical systems: networks, chimeras and reservoir computing. Hart JD; Larger L; Murphy TE; Roy R Philos Trans A Math Phys Eng Sci; 2019 Sep; 377(2153):20180123. PubMed ID: 31329059 [TBL] [Abstract][Full Text] [Related]
2. Experiments with arbitrary networks in time-multiplexed delay systems. Hart JD; Schmadel DC; Murphy TE; Roy R Chaos; 2017 Dec; 27(12):121103. PubMed ID: 29289048 [TBL] [Abstract][Full Text] [Related]
3. Complex Dynamical Networks Constructed with Fully Controllable Nonlinear Nanomechanical Oscillators. Fon W; Matheny MH; Li J; Krayzman L; Cross MC; D'Souza RM; Crutchfield JP; Roukes ML Nano Lett; 2017 Oct; 17(10):5977-5983. PubMed ID: 28884582 [TBL] [Abstract][Full Text] [Related]
4. Persistent Memory in Single Node Delay-Coupled Reservoir Computing. Kovac AD; Koall M; Pipa G; Toutounji H PLoS One; 2016; 11(10):e0165170. PubMed ID: 27783690 [TBL] [Abstract][Full Text] [Related]
5. Complexity in electro-optic delay dynamics: modelling, design and applications. Larger L Philos Trans A Math Phys Eng Sci; 2013 Sep; 371(1999):20120464. PubMed ID: 23960222 [TBL] [Abstract][Full Text] [Related]
6. Complex partial synchronization patterns in networks of delay-coupled neurons. Nikitin D; Omelchenko I; Zakharova A; Avetyan M; Fradkov AL; Schöll E Philos Trans A Math Phys Eng Sci; 2019 Sep; 377(2153):20180128. PubMed ID: 31329071 [TBL] [Abstract][Full Text] [Related]
7. Chimeras in globally coupled oscillators: A review. Mishra A; Saha S; Dana SK Chaos; 2023 Sep; 33(9):. PubMed ID: 37703474 [TBL] [Abstract][Full Text] [Related]
8. Constructing polynomial libraries for reservoir computing in nonlinear dynamical system forecasting. Ren HH; Bai YL; Fan MH; Ding L; Yue XX; Yu QH Phys Rev E; 2024 Feb; 109(2-1):024227. PubMed ID: 38491629 [TBL] [Abstract][Full Text] [Related]
9. Fast physical repetitive patterns generation for masking in time-delay reservoir computing. Argyris A; Schwind J; Fischer I Sci Rep; 2021 Mar; 11(1):6701. PubMed ID: 33758334 [TBL] [Abstract][Full Text] [Related]
10. Harnessing synthetic active particles for physical reservoir computing. Wang X; Cichos F Nat Commun; 2024 Jan; 15(1):774. PubMed ID: 38287028 [TBL] [Abstract][Full Text] [Related]
11. Dynamic synchronization of a time-evolving optical network of chaotic oscillators. Cohen AB; Ravoori B; Sorrentino F; Murphy TE; Ott E; Roy R Chaos; 2010 Dec; 20(4):043142. PubMed ID: 21198112 [TBL] [Abstract][Full Text] [Related]
13. Attracting Poisson chimeras in two-population networks. Lee S; Krischer K Chaos; 2021 Nov; 31(11):113101. PubMed ID: 34881613 [TBL] [Abstract][Full Text] [Related]
14. In materia reservoir computing with a fully memristive architecture based on self-organizing nanowire networks. Milano G; Pedretti G; Montano K; Ricci S; Hashemkhani S; Boarino L; Ielmini D; Ricciardi C Nat Mater; 2022 Feb; 21(2):195-202. PubMed ID: 34608285 [TBL] [Abstract][Full Text] [Related]
15. Reservoir computing as digital twins for nonlinear dynamical systems. Kong LW; Weng Y; Glaz B; Haile M; Lai YC Chaos; 2023 Mar; 33(3):033111. PubMed ID: 37003826 [TBL] [Abstract][Full Text] [Related]
16. Transmission time delays organize the brain network synchronization. Petkoski S; Jirsa VK Philos Trans A Math Phys Eng Sci; 2019 Sep; 377(2153):20180132. PubMed ID: 31329065 [TBL] [Abstract][Full Text] [Related]
17. Exponential Synchronization for Delayed Dynamical Networks via Intermittent Control: Dealing With Actuator Saturations. Chen Y; Wang Z; Shen B; Dong H IEEE Trans Neural Netw Learn Syst; 2019 Apr; 30(4):1000-1012. PubMed ID: 30106695 [TBL] [Abstract][Full Text] [Related]
18. Nonlinear dynamics of delay systems: an overview. Otto A; Just W; Radons G Philos Trans A Math Phys Eng Sci; 2019 Sep; 377(2153):20180389. PubMed ID: 31329061 [TBL] [Abstract][Full Text] [Related]
19. Accurate detection of hierarchical communities in complex networks based on nonlinear dynamical evolution. Zhuo Z; Cai SM; Tang M; Lai YC Chaos; 2018 Apr; 28(4):043119. PubMed ID: 31906645 [TBL] [Abstract][Full Text] [Related]
20. Chimeras and complex cluster states in arrays of spin-torque oscillators. Zaks M; Pikovsky A Sci Rep; 2017 Jul; 7(1):4648. PubMed ID: 28680160 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]