BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

52 related articles for article (PubMed ID: 31329408)

  • 1. In Situ Monitoring of Membrane Protein Insertion into Block Copolymer Vesicle Membranes and Their Spreading via Potential-Assisted Approach.
    Mirzaei Garakani T; Liu Z; Glebe U; Gehrmann J; Lazar J; Mertens MAS; Möller M; Hamzelui N; Zhu L; Schnakenberg U; Böker A; Schwaneberg U
    ACS Appl Mater Interfaces; 2019 Aug; 11(32):29276-29289. PubMed ID: 31329408
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redesign of a plugged beta-barrel membrane protein.
    Mohammad MM; Howard KR; Movileanu L
    J Biol Chem; 2011 Mar; 286(10):8000-8013. PubMed ID: 21189254
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inspection of the engineered FhuA ΔC/Δ4L protein nanopore by polymer exclusion.
    Niedzwiecki DJ; Mohammad MM; Movileanu L
    Biophys J; 2012 Nov; 103(10):2115-24. PubMed ID: 23200045
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Does the lipid environment impact the open-state conductance of an engineered β-barrel protein nanopore?
    Tomita N; Mohammad MM; Niedzwiecki DJ; Ohta M; Movileanu L
    Biochim Biophys Acta; 2013 Mar; 1828(3):1057-65. PubMed ID: 23246446
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly permeable polymeric membranes based on the incorporation of the functional water channel protein Aquaporin Z.
    Kumar M; Grzelakowski M; Zilles J; Clark M; Meier W
    Proc Natl Acad Sci U S A; 2007 Dec; 104(52):20719-24. PubMed ID: 18077364
    [TBL] [Abstract][Full Text] [Related]  

  • 6. First insights on organic cosolvent effects on FhuA wildtype and FhuA Δ1-159.
    Tenne SJ; Schwaneberg U
    Int J Mol Sci; 2012; 13(2):2459-2471. PubMed ID: 22408464
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reconstitution of the membrane protein OmpF into biomimetic block copolymer-phospholipid hybrid membranes.
    Bieligmeyer M; Artukovic F; Nussberger S; Hirth T; Schiestel T; Müller M
    Beilstein J Nanotechnol; 2016; 7():881-92. PubMed ID: 27547605
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomolecules Turn Self-Assembling Amphiphilic Block Co-polymer Platforms Into Biomimetic Interfaces.
    Yorulmaz Avsar S; Kyropoulou M; Di Leone S; Schoenenberger CA; Meier WP; Palivan CG
    Front Chem; 2018; 6():645. PubMed ID: 30671429
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Constructing artificial respiratory chain in polymer compartments: Insights into the interplay between
    Marušič N; Otrin L; Zhao Z; Lira RB; Kyrilis FL; Hamdi F; Kastritis PL; Vidaković-Koch T; Ivanov I; Sundmacher K; Dimova R
    Proc Natl Acad Sci U S A; 2020 Jun; 117(26):15006-15017. PubMed ID: 32554497
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Planar Polymer Membranes Accommodate Functional Self-Assembly of Inserted Resorcinarene Nanocapsules.
    Muthwill MS; Bina M; Paracini N; Coats JP; Merget S; Yorulmaz Avsar S; Messmer D; Tiefenbacher K; Palivan CG
    ACS Appl Mater Interfaces; 2024 Mar; 16(10):13291-13304. PubMed ID: 38422470
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA nanopores as artificial membrane channels for bioprotonics.
    Luo L; Manda S; Park Y; Demir B; Sanchez J; Anantram MP; Oren EE; Gopinath A; Rolandi M
    Nat Commun; 2023 Sep; 14(1):5364. PubMed ID: 37666808
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthetic biomimetic membranes and their sensor applications.
    Kim YR; Jung S; Ryu H; Yoo YE; Kim SM; Jeon TJ
    Sensors (Basel); 2012; 12(7):9530-50. PubMed ID: 23012557
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlling plasmonic suprastructures through self-assembly of gold nanoparticles with hybrid copolymer-lipid vesicles.
    Cardellini J; Balestri A; Comparini L; Lonetti B; Brucale M; Valle F; Berti D; Montis C
    J Colloid Interface Sci; 2024 Jan; 654(Pt B):848-858. PubMed ID: 37898069
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spraying of Ultrathin Isoporous Block Copolymer Membranes-A Story about Challenges and Limitations.
    Bucher T; Clodt JI; Abetz C; Bajer B; Filiz V
    Membranes (Basel); 2020 Dec; 10(12):. PubMed ID: 33297532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Permselectivity limits of biomimetic desalination membranes.
    Werber JR; Elimelech M
    Sci Adv; 2018 Jun; 4(6):eaar8266. PubMed ID: 29963628
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tailored Polymeric Membranes for Mycobacterium Smegmatis Porin A (MspA) Based Biosensors.
    Morton D; Mortezaei S; Yemenicioglu S; Isaacman MJ; Nova IC; Gundlach JH; Theogarajan L
    J Mater Chem B; 2015 Jul; 3(25):5080-5086. PubMed ID: 26413301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Outer Membrane-Inspired Polymer Coating Protects and Endows Escherichia coli with Novel Functionalities.
    Belluati A; Harley I; Lieberwirth I; Bruns N
    Small; 2023 Nov; 19(46):e2303384. PubMed ID: 37452438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coupling Photoresponsive Transmembrane Ion Transport with Transition Metal Catalysis.
    Chao X; Johnson TG; Temian MC; Docker A; Wallabregue ALD; Scott A; Conway SJ; Langton MJ
    J Am Chem Soc; 2024 Feb; 146(7):4351-4356. PubMed ID: 38334376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrophoretic transport and dynamic deformation of bio-vesicles.
    Morshed A; Dutta P; Kim MJ
    Electrophoresis; 2019 Sep; 40(18-19):2584-2591. PubMed ID: 30993726
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Biomimetic DNA-Based Membrane Gate for Protein-Controlled Transport of Cytotoxic Drugs.
    Lanphere C; Arnott PM; Jones SF; Korlova K; Howorka S
    Angew Chem Weinheim Bergstr Ger; 2021 Jan; 133(4):1931-1936. PubMed ID: 38504763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.