These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 31329425)
1. Isolating the Roles of Hydrogen Exposure and Trace Carbon Contamination on the Formation of Active Catalyst Populations for Carbon Nanotube Growth. Carpena-Núñez J; Boscoboinik JA; Saber S; Rao R; Zhong JQ; Maschmann MR; Kidambi PR; Dee NT; Zakharov DN; Hart AJ; Stach EA; Maruyama B ACS Nano; 2019 Aug; 13(8):8736-8748. PubMed ID: 31329425 [TBL] [Abstract][Full Text] [Related]
2. Real-Time Imaging of Self-Organization and Mechanical Competition in Carbon Nanotube Forest Growth. Balakrishnan V; Bedewy M; Meshot ER; Pattinson SW; Polsen ES; Laye F; Zakharov DN; Stach EA; Hart AJ ACS Nano; 2016 Dec; 10(12):11496-11504. PubMed ID: 27959511 [TBL] [Abstract][Full Text] [Related]
3. Synthesis of Vertical Carbon Nanotube Interconnect Structures Using CMOS-Compatible Catalysts. Ma Z; Zhou S; Zhou C; Xiao Y; Li S; Chan M Nanomaterials (Basel); 2020 Sep; 10(10):. PubMed ID: 32992981 [TBL] [Abstract][Full Text] [Related]
4. CFD-aerosol modeling of the effects of wall composition and inlet conditions on carbon nanotube catalyst particle activity. Brown DP; Nasibulin AG; Kauppinen EI J Nanosci Nanotechnol; 2008 Aug; 8(8):3803-19. PubMed ID: 19049135 [TBL] [Abstract][Full Text] [Related]
5. High-speed in situ X-ray scattering of carbon nanotube film nucleation and self-organization. Meshot ER; Verploegen E; Bedewy M; Tawfick S; Woll AR; Green KS; Hromalik M; Koerner LJ; Philipp HT; Tate MW; Gruner SM; Hart AJ ACS Nano; 2012 Jun; 6(6):5091-101. PubMed ID: 22571676 [TBL] [Abstract][Full Text] [Related]
6. Mechanical coupling limits the density and quality of self-organized carbon nanotube growth. Bedewy M; Hart AJ Nanoscale; 2013 Apr; 5(7):2928-37. PubMed ID: 23455411 [TBL] [Abstract][Full Text] [Related]
7. Tailoring the morphology of carbon nanotube arrays: from spinnable forests to undulating foams. Zhang Y; Zou G; Doorn SK; Htoon H; Stan L; Hawley ME; Sheehan CJ; Zhu Y; Jia Q ACS Nano; 2009 Aug; 3(8):2157-62. PubMed ID: 19640000 [TBL] [Abstract][Full Text] [Related]
8. Decoupled control of carbon nanotube forest density and diameter by continuous-feed convective assembly of catalyst particles. Polsen ES; Bedewy M; Hart AJ Small; 2013 Aug; 9(15):2564-75. PubMed ID: 23418098 [TBL] [Abstract][Full Text] [Related]
9. Population growth dynamics of carbon nanotubes. Bedewy M; Meshot ER; Reinker MJ; Hart AJ ACS Nano; 2011 Nov; 5(11):8974-89. PubMed ID: 22023221 [TBL] [Abstract][Full Text] [Related]
10. The Dependence of CNT Aerogel Synthesis on Sulfur-driven Catalyst Nucleation Processes and a Critical Catalyst Particle Mass Concentration. Hoecker C; Smail F; Pick M; Weller L; Boies AM Sci Rep; 2017 Nov; 7(1):14519. PubMed ID: 29109427 [TBL] [Abstract][Full Text] [Related]
11. Growth and Mechanics of Heterogeneous, 3D Carbon Nanotube Forest Microstructures Formed by Sequential Selective-Area Synthesis. Hines R; Hajilounezhad T; Love-Baker C; Koerner G; Maschmann MR ACS Appl Mater Interfaces; 2020 Apr; 12(15):17893-17900. PubMed ID: 32208632 [TBL] [Abstract][Full Text] [Related]
12. Tuning of vertically-aligned carbon nanotube diameter and areal density through catalyst pre-treatment. Nessim GD; Hart AJ; Kim JS; Acquaviva D; Oh J; Morgan CD; Seita M; Leib JS; Thompson CV Nano Lett; 2008 Nov; 8(11):3587-93. PubMed ID: 18837566 [TBL] [Abstract][Full Text] [Related]
13. Low-temperature catalyst activator: mechanism of dense carbon nanotube forest growth studied using synchrotron radiation. Takashima A; Izumi Y; Ikenaga E; Ohkochi T; Kotsugi M; Matsushita T; Muro T; Kawabata A; Murakami T; Nihei M; Yokoyama N IUCrJ; 2014 Jul; 1(Pt 4):221-7. PubMed ID: 25075343 [TBL] [Abstract][Full Text] [Related]
14. The Synergistic Effect of a Bimetallic Catalyst for the Synthesis of Carbon Nanotube Aerogels and their Predominant Chirality. Moon SY; Kim WS Chemistry; 2019 Oct; 25(59):13635-13639. PubMed ID: 31407390 [TBL] [Abstract][Full Text] [Related]
15. Oxygen-promoted catalyst sintering influences number density, alignment, and wall number of vertically aligned carbon nanotubes. Shi W; Li J; Polsen ES; Oliver CR; Zhao Y; Meshot ER; Barclay M; Fairbrother DH; Hart AJ; Plata DL Nanoscale; 2017 Apr; 9(16):5222-5233. PubMed ID: 28397885 [TBL] [Abstract][Full Text] [Related]
16. What is below the support layer affects carbon nanotube growth: an iron catalyst reservoir yields taller nanotube carpets. Shawat E; Mor V; Oakes L; Fleger Y; Pint CL; Nessim GD Nanoscale; 2014; 6(3):1545-51. PubMed ID: 24323364 [TBL] [Abstract][Full Text] [Related]
17. Carbon nanotube synthesis and spinning as macroscopic fibers assisted by the ceramic reactor tube. Rodiles X; Reguero V; Vila M; Alemán B; Arévalo L; Fresno F; O'Shea VAP; Vilatela JJ Sci Rep; 2019 Jun; 9(1):9239. PubMed ID: 31239459 [TBL] [Abstract][Full Text] [Related]
18. Growth and Termination Dynamics of Multiwalled Carbon Nanotubes at Near Ambient Pressure: An in Situ Transmission Electron Microscopy Study. Huang X; Farra R; Schlögl R; Willinger MG Nano Lett; 2019 Aug; 19(8):5380-5387. PubMed ID: 31369275 [TBL] [Abstract][Full Text] [Related]
19. Influence of the Sulfur Content Catalyst on the Packing Density of Carbon Nanotube Forests. Moon SY; Kang IJ; Kim SM; Kim WS Nanomaterials (Basel); 2019 Jun; 9(6):. PubMed ID: 31212956 [TBL] [Abstract][Full Text] [Related]
20. Synergetic chemical coupling controls the uniformity of carbon nanotube microstructure growth. Bedewy M; Farmer B; Hart AJ ACS Nano; 2014 Jun; 8(6):5799-812. PubMed ID: 24794192 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]