These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

392 related articles for article (PubMed ID: 31329575)

  • 1. Ensemble of decision tree reveals potential miRNA-disease associations.
    Chen X; Zhu CC; Yin J
    PLoS Comput Biol; 2019 Jul; 15(7):e1007209. PubMed ID: 31329575
    [TBL] [Abstract][Full Text] [Related]  

  • 2. LRSSLMDA: Laplacian Regularized Sparse Subspace Learning for MiRNA-Disease Association prediction.
    Chen X; Huang L
    PLoS Comput Biol; 2017 Dec; 13(12):e1005912. PubMed ID: 29253885
    [TBL] [Abstract][Full Text] [Related]  

  • 3. EGBMMDA: Extreme Gradient Boosting Machine for MiRNA-Disease Association prediction.
    Chen X; Huang L; Xie D; Zhao Q
    Cell Death Dis; 2018 Jan; 9(1):3. PubMed ID: 29305594
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MDHGI: Matrix Decomposition and Heterogeneous Graph Inference for miRNA-disease association prediction.
    Chen X; Yin J; Qu J; Huang L
    PLoS Comput Biol; 2018 Aug; 14(8):e1006418. PubMed ID: 30142158
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An improved random forest-based computational model for predicting novel miRNA-disease associations.
    Yao D; Zhan X; Kwoh CK
    BMC Bioinformatics; 2019 Dec; 20(1):624. PubMed ID: 31795954
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Computational Study of Potential miRNA-Disease Association Inference Based on Ensemble Learning and Kernel Ridge Regression.
    Peng LH; Zhou LQ; Chen X; Piao X
    Front Bioeng Biotechnol; 2020; 8():40. PubMed ID: 32117922
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PBMDA: A novel and effective path-based computational model for miRNA-disease association prediction.
    You ZH; Huang ZA; Zhu Z; Yan GY; Li ZW; Wen Z; Chen X
    PLoS Comput Biol; 2017 Mar; 13(3):e1005455. PubMed ID: 28339468
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting microRNA-disease associations using bipartite local models and hubness-aware regression.
    Chen X; Cheng JY; Yin J
    RNA Biol; 2018; 15(9):1192-1205. PubMed ID: 30196756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An integrated framework for the identification of potential miRNA-disease association based on novel negative samples extraction strategy.
    Wang CC; Chen X; Yin J; Qu J
    RNA Biol; 2019 Mar; 16(3):257-269. PubMed ID: 30646823
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MCMDA: Matrix completion for MiRNA-disease association prediction.
    Li JQ; Rong ZH; Chen X; Yan GY; You ZH
    Oncotarget; 2017 Mar; 8(13):21187-21199. PubMed ID: 28177900
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel computational model based on super-disease and miRNA for potential miRNA-disease association prediction.
    Chen X; Jiang ZC; Xie D; Huang DS; Zhao Q; Yan GY; You ZH
    Mol Biosyst; 2017 May; 13(6):1202-1212. PubMed ID: 28470244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ELLPMDA: Ensemble learning and link prediction for miRNA-disease association prediction.
    Chen X; Zhou Z; Zhao Y
    RNA Biol; 2018; 15(6):807-818. PubMed ID: 29619882
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In silico prediction of potential miRNA-disease association using an integrative bioinformatics approach based on kernel fusion.
    Guan NN; Wang CC; Zhang L; Huang L; Li JQ; Piao X
    J Cell Mol Med; 2020 Jan; 24(1):573-587. PubMed ID: 31747722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NDAMDA: Network distance analysis for MiRNA-disease association prediction.
    Chen X; Wang LY; Huang L
    J Cell Mol Med; 2018 May; 22(5):2884-2895. PubMed ID: 29532987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Novel Neighborhood-Based Computational Model for Potential MiRNA-Disease Association Prediction.
    Liu Y; Li X; Feng X; Wang L
    Comput Math Methods Med; 2019; 2019():5145646. PubMed ID: 30800172
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GIMDA: Graphlet interaction-based MiRNA-disease association prediction.
    Chen X; Guan NN; Li JQ; Yan GY
    J Cell Mol Med; 2018 Mar; 22(3):1548-1561. PubMed ID: 29272076
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MiRNA-disease association prediction via hypergraph learning based on high-dimensionality features.
    Wang YT; Wu QW; Gao Z; Ni JC; Zheng CH
    BMC Med Inform Decis Mak; 2021 Apr; 21(Suppl 1):133. PubMed ID: 33882934
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient framework for predicting MiRNA-disease associations based on improved hybrid collaborative filtering.
    Nie R; Li Z; You ZH; Bao W; Li J
    BMC Med Inform Decis Mak; 2021 Aug; 21(Suppl 1):254. PubMed ID: 34461870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SNMFSMMA: using symmetric nonnegative matrix factorization and Kronecker regularized least squares to predict potential small molecule-microRNA association.
    Zhao Y; Chen X; Yin J; Qu J
    RNA Biol; 2020 Feb; 17(2):281-291. PubMed ID: 31739716
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of Small Molecule-MicroRNA Associations by Sparse Learning and Heterogeneous Graph Inference.
    Yin J; Chen X; Wang CC; Zhao Y; Sun YZ
    Mol Pharm; 2019 Jul; 16(7):3157-3166. PubMed ID: 31136190
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.