BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 31330001)

  • 1. REASSESSMENT OF INHALATION DOSES TO WORKERS IN AUSTRALIAN SHOW CAVES.
    Solomon SB
    Radiat Prot Dosimetry; 2019 Oct; 184(3-4):298-301. PubMed ID: 31330001
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radon as a tracer of daily, seasonal and spatial air movements in the Underground Tourist Route "Coal Mine" (SW Poland).
    Tchorz-Trzeciakiewicz DE; Parkitny T
    J Environ Radioact; 2015 Nov; 149():90-8. PubMed ID: 26225833
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhalation dose assessment of indoor radon progeny using biokinetic and dosimetric modeling and its application to Jordanian population.
    Al-Jundi J; Li WB; Abusini M; Tschiersch J; Hoeschen C; Oeh U
    J Environ Radioact; 2011 Jun; 102(6):574-80. PubMed ID: 21477902
    [TBL] [Abstract][Full Text] [Related]  

  • 4. EFFECTIVE DOSE COEFFICIENTS FOR RADON AND PROGENY: A REVIEW OF ICRP AND UNSCEAR VALUES.
    Marsh JW; Tomášek L; Laurier D; Harrison JD
    Radiat Prot Dosimetry; 2021 Aug; 195(1):1-20. PubMed ID: 34278430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Radon levels in Romanian caves: an occupational exposure survey.
    Cucoş Dinu A; Călugăr MI; Burghele BD; Dumitru OA; Cosma C; Onac BP
    Environ Geochem Health; 2017 Oct; 39(5):1085-1099. PubMed ID: 27696229
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of the dose from radon and its decay products in the Bozkov dolomite cave.
    Rovenská K; Thinová L; Zdímal V
    Radiat Prot Dosimetry; 2008; 130(1):34-7. PubMed ID: 18397926
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radon dose calculation methodology for underground workers in the Czech Republic.
    Thinova L; Rovenska K
    Radiat Prot Dosimetry; 2011 May; 145(2-3):233-7. PubMed ID: 21474473
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variations in radon dosimetry under different assessment approaches in the Altamira Cave.
    Sainz C; Rábago D; Fernández E; Quindós J; Quindós L; Fernández A; Fuente I; Arteche JL; Quindós LS; Celaya S
    J Radiol Prot; 2020 Jun; 40(2):367-380. PubMed ID: 31978929
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comprehensive investigation of radon exposure in Austrian tourist mines and caves.
    Gruber V; Ringer W; Gräser J; Aspek W; Gschnaller J
    Radiat Prot Dosimetry; 2014 Nov; 162(1-2):78-82. PubMed ID: 25013031
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement of the equilibrium factor between radon and its progeny in the underground mining environment.
    Ntwaeaborwa OM; Kgwadi ND; Taole SH; Strydom R
    Health Phys; 2004 Apr; 86(4):374-7. PubMed ID: 15057058
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measuring radon concentrations and estimating dose in tourist caves.
    Martín Sánchez A; de la Torre Pérez J; Ruano Sánchez AB; Naranjo Correa FL
    Radiat Prot Dosimetry; 2015 Nov; 167(1-3):279-83. PubMed ID: 25948834
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RADON DOSIMETRY FOR WORKERS: ICRP'S APPROACH.
    Marsh JW; Laurier D; Tirmarche M
    Radiat Prot Dosimetry; 2017 Dec; 177(4):466-474. PubMed ID: 28510733
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Field tests of a radon progeny sampler for the determination of effective dose.
    Solomon SB
    Sci Total Environ; 2001 May; 272(1-3):303-13. PubMed ID: 11379926
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Radon continuous monitoring in Altamira Cave (northern Spain) to assess user's annual effective dose.
    Lario J; Sánchez-Moral S; Cañaveras JC; Cuezva S; Soler V
    J Environ Radioact; 2005; 80(2):161-74. PubMed ID: 15701381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Occupational exposure to radon for underground tourist routes in Poland: Doses to lung and the risk of developing lung cancer.
    Walczak K; Olszewski J; Politański P; Zmyślony M
    Int J Occup Med Environ Health; 2017 Jul; 30(5):687-694. PubMed ID: 28584312
    [TBL] [Abstract][Full Text] [Related]  

  • 16. STUDY OF 222RN CONTINUOUS MONITORING TIME SERIES AND DOSE ASSESSMENT IN SIX EUROPEAN CAVES.
    Ambrosino F; Thinová L; Briestenský M; Sabbarese C
    Radiat Prot Dosimetry; 2020 Nov; 191(2):233-237. PubMed ID: 33123740
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regular radon activity concentration and effective dose measurements inside the great pyramid with passive nuclear track detectors.
    Hafez AF; Bishara AA; Kotb MA; Hussein AS
    Health Phys; 2003 Aug; 85(2):210-5. PubMed ID: 12938968
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radon progeny in Egyptian underground phosphate mines.
    el-Hady MA; Mohammed A; el-Hussein A; Ali AE; Ahmed AA
    Radiat Prot Dosimetry; 2001; 95(1):63-8. PubMed ID: 11468809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of the main factors affecting the evaluation of the radon dose in workplaces: the case of tourist caves.
    Sainz C; Quindós LS; Fuente I; Nicolás J; Quindós L
    J Hazard Mater; 2007 Jul; 145(3):368-71. PubMed ID: 17184916
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Radon in the creswell crags Permian limestone caves.
    Gillmore GK; Phillips PS; Denman AR; Gilbertson DD
    J Environ Radioact; 2002; 62(2):165-79. PubMed ID: 12171469
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.