These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 31330097)

  • 21. Chiral separation strategy in polar organic solvent chromatography and performance comparison with normal-phase liquid and supercritical-fluid chromatography.
    Matthijs N; Maftouh M; Vander Heyden Y
    J Sep Sci; 2006 Jul; 29(10):1353-62. PubMed ID: 16894779
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Using subcritical/supercritical fluid chromatography to separate acidic, basic, and neutral compounds over an ionic liquid-functionalized stationary phase.
    Chou FM; Wang WT; Wei GT
    J Chromatogr A; 2009 Apr; 1216(16):3594-9. PubMed ID: 19269644
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Centrifugal partition chromatography: A preparative tool for isolation and purification of xylindein from Chlorociboria aeruginosa.
    Boonloed A; Weber GL; Ramzy KM; Dias VR; Remcho VT
    J Chromatogr A; 2016 Dec; 1478():19-25. PubMed ID: 27919517
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Improvement of an overloaded, multi-component, solvent gradient bioseparation through multiobjective optimization.
    Tarafder A; Aumann L; Müller-Späth T; Morbidelli M
    J Chromatogr A; 2007 Oct; 1167(1):42-53. PubMed ID: 17765250
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A perspective on the use of deep deterministic policy gradient reinforcement learning for retention time modeling in reversed-phase liquid chromatography.
    Kensert A; Desmet G; Cabooter D
    J Chromatogr A; 2024 Jan; 1713():464570. PubMed ID: 38101304
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Accurate prediction of retention in hydrophilic interaction chromatography by back calculation of high pressure liquid chromatography gradient profiles.
    Wang N; Boswell PG
    J Chromatogr A; 2017 Oct; 1520():75-82. PubMed ID: 28864110
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Method development for HILIC assays.
    Dejaegher B; Mangelings D; Vander Heyden Y
    J Sep Sci; 2008 May; 31(9):1438-48. PubMed ID: 18461571
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inversion of type of separation system in planar chromatography of peptides, using C18 silica-based adsorbents.
    Gwarda RŁ; Aletańska-Kozak M; Matosiuk D; Dzido TH
    J Chromatogr A; 2016 Apr; 1440():240-248. PubMed ID: 26944834
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Orthogonal analytical screening for liquid chromatography-mass spectrometry method development and preparative scale-up.
    Font LM; Fontana A; Galceran MT; Iturrino L; Perez V
    J Chromatogr A; 2011 Jan; 1218(1):74-82. PubMed ID: 21122868
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Determining gradient conditions for peptide purification in RPLC with machine-learning-based retention time predictions.
    Samuelsson J; Eiriksson FF; Åsberg D; Thorsteinsdóttir M; Fornstedt T
    J Chromatogr A; 2019 Aug; 1598():92-100. PubMed ID: 30961963
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Recent development of ionic liquid stationary phases for liquid chromatography.
    Shi X; Qiao L; Xu G
    J Chromatogr A; 2015 Nov; 1420():1-15. PubMed ID: 26463427
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Prediction of retention in hydrophilic interaction liquid chromatography using solute molecular descriptors based on chemical structures.
    Taraji M; Haddad PR; Amos RI; Talebi M; Szucs R; Dolan JW; Pohl CA
    J Chromatogr A; 2017 Feb; 1486():59-67. PubMed ID: 28049585
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Elution mechanism of polypeptides in reversed-phase liquid chromatography based on the critical threshold of organic solvent to induce abrupt change in adsorption capacity to the column packing.
    Goda R; Sudo K
    Biomed Chromatogr; 2008 Jan; 22(1):81-91. PubMed ID: 17685410
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cation exchange/hydrophobic interaction monolithic chromatography of small molecules and proteins by nano liquid chromatography.
    Aydoğan C; Yılmaz F; Denizli A
    J Sep Sci; 2013 Jun; 36(11):1685-92. PubMed ID: 23559572
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Placing supercritical fluid chromatography one step ahead of reversed-phase high performance liquid chromatography in the achiral purification arena: a hydrophilic interaction chromatography cross-linked diol chemistry as a new generic stationary phase.
    de la Puente ML; Soto-Yarritu PL; Anta C
    J Chromatogr A; 2012 Aug; 1250():172-81. PubMed ID: 22494643
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Purification of drug degradation products supported by analytical and preparative supercritical fluid chromatography.
    Noireau A; Lemasson E; Mauge F; Petit AM; Bertin S; Hennig P; Lesellier É; West C
    J Pharm Biomed Anal; 2019 Jun; 170():40-47. PubMed ID: 30904738
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Relevance of pi-pi and dipole-dipole interactions for retention on cyano and phenyl columns in reversed-phase liquid chromatography.
    Croes K; Steffens A; Marchand DH; Snyder LR
    J Chromatogr A; 2005 Dec; 1098(1-2):123-30. PubMed ID: 16314168
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Retention prediction and separation optimization of ionizable analytes in reversed-phase liquid chromatography by organic modifier gradients in different eluent pHs.
    Fasoula S; Zisi Ch; Nikitas P; Pappa-Louisi A
    J Chromatogr A; 2013 Aug; 1305():131-8. PubMed ID: 23885673
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Two-dimensional hydrophilic interaction chromatography × reversed-phase liquid chromatography for the preparative isolation of potential anti-hepatitis phenylpropanoids from Salvia prattii.
    Dang J; Shao Y; Zhao J; Mei L; Tao Y; Wang Q; Zhang L
    J Sep Sci; 2016 Sep; 39(17):3327-38. PubMed ID: 27390114
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Combined solvent- and non-uniform temperature-programmed gradient liquid chromatography. I - A theoretical investigation.
    Gritti F
    J Chromatogr A; 2016 Nov; 1473():38-47. PubMed ID: 27814914
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.