These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 31330134)

  • 1. AKR1D1 is a novel regulator of metabolic phenotype in human hepatocytes and is dysregulated in non-alcoholic fatty liver disease.
    Nikolaou N; Gathercole LL; Marchand L; Althari S; Dempster NJ; Green CJ; van de Bunt M; McNeil C; Arvaniti A; Hughes BA; Sgromo B; Gillies RS; Marschall HU; Penning TM; Ryan J; Arlt W; Hodson L; Tomlinson JW
    Metabolism; 2019 Oct; 99():67-80. PubMed ID: 31330134
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glucocorticoids regulate AKR1D1 activity in human liver in vitro and in vivo.
    Nikolaou N; Arvaniti A; Appanna N; Sharp A; Hughes BA; Digweed D; Whitaker MJ; Ross R; Arlt W; Penning TM; Morris K; George S; Keevil BG; Hodson L; Gathercole LL; Tomlinson JW
    J Endocrinol; 2020 May; 245(2):207-218. PubMed ID: 32106090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. AKR1D1 knockout mice develop a sex-dependent metabolic phenotype.
    Gathercole LL; Nikolaou N; Harris SE; Arvaniti A; Poolman TM; Hazlehurst JM; Kratschmar DV; Todorčević M; Moolla A; Dempster N; Pink RC; Saikali MF; Bentley L; Penning TM; Ohlsson C; Cummins CL; Poutanen M; Odermatt A; Cox RD; Tomlinson JW
    J Endocrinol; 2022 Apr; 253(3):97-113. PubMed ID: 35318963
    [TBL] [Abstract][Full Text] [Related]  

  • 4. AKR1D1 regulates glucocorticoid availability and glucocorticoid receptor activation in human hepatoma cells.
    Nikolaou N; Gathercole LL; Kirkwood L; Dunford JE; Hughes BA; Gilligan LC; Oppermann U; Penning TM; Arlt W; Hodson L; Tomlinson JW
    J Steroid Biochem Mol Biol; 2019 May; 189():218-227. PubMed ID: 30769091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dysregulation of Δ
    Valanejad L; Ghareeb M; Shiffka S; Nadolny C; Chen Y; Guo L; Verma R; You S; Akhlaghi F; Deng R
    Mol Cell Endocrinol; 2018 Jul; 470():127-141. PubMed ID: 29024782
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential activity and expression of human 5β-reductase (AKR1D1) splice variants.
    Appanna N; Gibson H; Gangitano E; Dempster NJ; Morris K; George S; Arvaniti A; Gathercole LL; Keevil B; Penning TM; Storbeck KH; Tomlinson JW; Nikolaou N
    J Mol Endocrinol; 2021 Mar; 66(3):181-194. PubMed ID: 33502336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential Feedback Regulation of Δ4-3-Oxosteroid 5β-Reductase Expression by Bile Acids.
    Valanejad L; Nadolny C; Shiffka S; Chen Y; You S; Deng R
    PLoS One; 2017; 12(1):e0170960. PubMed ID: 28125709
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Degradation of PHLPP2 by KCTD17, via a Glucagon-Dependent Pathway, Promotes Hepatic Steatosis.
    Kim K; Ryu D; Dongiovanni P; Ozcan L; Nayak S; Ueberheide B; Valenti L; Auwerx J; Pajvani UB
    Gastroenterology; 2017 Dec; 153(6):1568-1580.e10. PubMed ID: 28859855
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic variation in aldo-keto reductase 1D1 (AKR1D1) affects the expression and activity of multiple cytochrome P450s.
    Chaudhry AS; Thirumaran RK; Yasuda K; Yang X; Fan Y; Strom SC; Schuetz EG
    Drug Metab Dispos; 2013 Aug; 41(8):1538-47. PubMed ID: 23704699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activation of the Hypoxia Inducible Factor 1α Subunit Pathway in Steatotic Liver Contributes to Formation of Cholesterol Gallstones.
    Asai Y; Yamada T; Tsukita S; Takahashi K; Maekawa M; Honma M; Ikeda M; Murakami K; Munakata Y; Shirai Y; Kodama S; Sugisawa T; Chiba Y; Kondo Y; Kaneko K; Uno K; Sawada S; Imai J; Nakamura Y; Yamaguchi H; Tanaka K; Sasano H; Mano N; Ueno Y; Shimosegawa T; Katagiri H
    Gastroenterology; 2017 May; 152(6):1521-1535.e8. PubMed ID: 28088462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ganoderma Lucidum Polysaccharide Peptide Alleviates Hepatoteatosis via Modulating Bile Acid Metabolism Dependent on FXR-SHP/FGF.
    Zhong D; Xie Z; Huang B; Zhu S; Wang G; Zhou H; Lin S; Lin Z; Yang B
    Cell Physiol Biochem; 2018; 49(3):1163-1179. PubMed ID: 30196282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rate of steroid double-bond reduction catalysed by the human steroid 5β-reductase (AKR1D1) is sensitive to steroid structure: implications for steroid metabolism and bile acid synthesis.
    Jin Y; Chen M; Penning TM
    Biochem J; 2014 Aug; 462(1):163-71. PubMed ID: 24894951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mesencephalic astrocyte-derived neurotrophic factor ameliorates steatosis in HepG2 cells by regulating hepatic lipid metabolism.
    He M; Wang C; Long XH; Peng JJ; Liu DF; Yang GY; Jensen MD; Zhang LL
    World J Gastroenterol; 2020 Mar; 26(10):1029-1041. PubMed ID: 32205994
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thrombospondin 1 improves hepatic steatosis in diet-induced insulin-resistant mice and is associated with hepatic fat content in humans.
    Bai J; Xia M; Xue Y; Ma F; Cui A; Sun Y; Han Y; Xu X; Zhang F; Hu Z; Liu Z; Liu Y; Cai G; Su W; Sun X; Wu H; Yan H; Chang X; Hu X; Bian H; Xia P; Gao J; Li Y; Gao X
    EBioMedicine; 2020 Jul; 57():102849. PubMed ID: 32580141
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decreased lipid metabolism but increased FA biosynthesis are coupled with changes in liver microRNAs in obese subjects with NAFLD.
    Latorre J; Moreno-Navarrete JM; Mercader JM; Sabater M; Rovira Ò; Gironès J; Ricart W; Fernández-Real JM; Ortega FJ
    Int J Obes (Lond); 2017 Apr; 41(4):620-630. PubMed ID: 28119530
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The hepatocyte IKK:NF-κB axis promotes liver steatosis by stimulating de novo lipogenesis and cholesterol synthesis.
    Heida A; Gruben N; Catrysse L; Koehorst M; Koster M; Kloosterhuis NJ; Gerding A; Havinga R; Bloks VW; Bongiovanni L; Wolters JC; van Dijk T; van Loo G; de Bruin A; Kuipers F; Koonen DPY; van de Sluis B
    Mol Metab; 2021 Dec; 54():101349. PubMed ID: 34626855
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hepatocyte MyD88 affects bile acids, gut microbiota and metabolome contributing to regulate glucose and lipid metabolism.
    Duparc T; Plovier H; Marrachelli VG; Van Hul M; Essaghir A; Ståhlman M; Matamoros S; Geurts L; Pardo-Tendero MM; Druart C; Delzenne NM; Demoulin JB; van der Merwe SW; van Pelt J; Bäckhed F; Monleon D; Everard A; Cani PD
    Gut; 2017 Apr; 66(4):620-632. PubMed ID: 27196572
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of disease associated point mutations on 5β-reductase (AKR1D1) enzyme function.
    Mindnich R; Drury JE; Penning TM
    Chem Biol Interact; 2011 May; 191(1-3):250-4. PubMed ID: 21185810
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of FXR in the development of NAFLD and intervention strategies of small molecules.
    Long J; Xu Y; Zhang X; Wu B; Wang C
    Arch Biochem Biophys; 2024 Jul; 757():110024. PubMed ID: 38703803
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of disease-related 5beta-reductase (AKR1D1) mutations reveals their potential to cause bile acid deficiency.
    Drury JE; Mindnich R; Penning TM
    J Biol Chem; 2010 Aug; 285(32):24529-37. PubMed ID: 20522910
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.