These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 31330384)

  • 1. Toxicity trends in E-Waste: A comparative analysis of metals in discarded mobile phones.
    Singh N; Duan H; Ogunseitan OA; Li J; Tang Y
    J Hazard Mater; 2019 Dec; 380():120898. PubMed ID: 31330384
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toxicity evaluation of E-waste plastics and potential repercussions for human health.
    Singh N; Duan H; Tang Y
    Environ Int; 2020 Apr; 137():105559. PubMed ID: 32062437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Risks of toxic ash from artisanal mining of discarded cellphones.
    Hibbert K; Ogunseitan OA
    J Hazard Mater; 2014 Aug; 278():1-7. PubMed ID: 24937657
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of end-of-life mobile phone printed circuit boards for its elemental composition and beneficiation analysis.
    Annamalai M; Gurumurthy K
    J Air Waste Manag Assoc; 2021 Mar; 71(3):315-327. PubMed ID: 32841086
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of Metal Content of Waste Mobile Phones and Estimation of Their Recovery Potential in Turkey.
    Sahan M; Kucuker MA; Demirel B; Kuchta K; Hursthouse A
    Int J Environ Res Public Health; 2019 Mar; 16(5):. PubMed ID: 30862075
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Forecasting quantities of critical raw materials in obsolete feature and smart phones in Greece: A path to circular economy.
    Kastanaki E; Giannis A
    J Environ Manage; 2022 Apr; 307():114566. PubMed ID: 35091243
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of the influence of mobile phones' material composition on the economic profitability of their manual dismantling.
    Bruno M; Sotera L; Fiore S
    J Environ Manage; 2022 May; 309():114677. PubMed ID: 35151134
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of toxicity potential of metallic elements in discarded electronics: a case study of mobile phones in China.
    Wu BY; Chan YC; Middendorf A; Gu X; Zhong HW
    J Environ Sci (China); 2008; 20(11):1403-8. PubMed ID: 19202883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generation estimation and metals recycling potentials evaluation of retired mobile phones in Korea.
    Li A; Li B; Wang H; Liu X; Guo Y; Lu B
    Environ Sci Pollut Res Int; 2023 Nov; 30(51):110481-110488. PubMed ID: 37792181
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolution of electronic waste toxicity: Trends in innovation and regulation.
    Chen M; Ogunseitan OA; Wang J; Chen H; Wang B; Chen S
    Environ Int; 2016; 89-90():147-54. PubMed ID: 26854858
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mobile Phones-An asset or a liability: A study based on characterization and assessment of metals in waste mobile phone components using leaching tests.
    Hira M; Yadav S; Morthekai P; Linda A; Kumar S; Sharma A
    J Hazard Mater; 2018 Jan; 342():29-40. PubMed ID: 28822247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Economic and environmental feasibility of hydrometallurgical process for recycling waste mobile phones.
    Liu J; Xu H; Zhang L; Liu CT
    Waste Manag; 2020 Jun; 111():41-50. PubMed ID: 32464524
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metal toxicity assessment of mobile phone parts using Milli Q water.
    Yadav S; Yadav S; Kumar P
    Waste Manag; 2014 Jul; 34(7):1274-8. PubMed ID: 24685400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential environmental impacts of light-emitting diodes (LEDs): metallic resources, toxicity, and hazardous waste classification.
    Lim SR; Kang D; Ogunseitan OA; Schoenung JM
    Environ Sci Technol; 2011 Jan; 45(1):320-7. PubMed ID: 21138290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of technological innovation and regulation development on e-waste toxicity: a case study of waste mobile phones.
    Chen Y; Chen M; Li Y; Wang B; Chen S; Xu Z
    Sci Rep; 2018 May; 8(1):7100. PubMed ID: 29740013
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigations of metal leaching from mobile phone parts using TCLP and WET methods.
    Yadav S; Yadav S
    J Environ Manage; 2014 Nov; 144():101-7. PubMed ID: 24929501
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Leaching assessments of hazardous materials in cellular telephones.
    Lincoln JD; Ogunseitan OA; Shapiro AA; Saphores JD
    Environ Sci Technol; 2007 Apr; 41(7):2572-8. PubMed ID: 17438818
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comprehensive characterization of End-of-Life mobile phones for secondary material resources identification.
    Fontana D; Pietrantonio M; Pucciarmati S; Rao C; Forte F
    Waste Manag; 2019 Nov; 99():22-30. PubMed ID: 31470263
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An investigation of trends in precious metal and copper content of RAM modules in WEEE: Implications for long term recycling potential.
    Charles RG; Douglas P; Hallin IL; Matthews I; Liversage G
    Waste Manag; 2017 Feb; 60():505-520. PubMed ID: 27890594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The situation of waste mobile phone management in developed countries and development status in China.
    Xu C; Zhang W; He W; Li G; Huang J
    Waste Manag; 2016 Dec; 58():341-347. PubMed ID: 27601328
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.