These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 31330628)
1. Active particles in noninertial frames: How to self-propel on a carousel. Löwen H Phys Rev E; 2019 Jun; 99(6-1):062608. PubMed ID: 31330628 [TBL] [Abstract][Full Text] [Related]
2. Inertial effects of self-propelled particles: From active Brownian to active Langevin motion. Löwen H J Chem Phys; 2020 Jan; 152(4):040901. PubMed ID: 32007042 [TBL] [Abstract][Full Text] [Related]
3. Active Brownian particle in homogeneous media of different viscosities: numerical simulations. Lisin EA; Vaulina OS; Lisina II; Petrov OF Phys Chem Chem Phys; 2021 Aug; 23(30):16248-16257. PubMed ID: 34308937 [TBL] [Abstract][Full Text] [Related]
6. Motion of a self-propelled particle with rotational inertia. Lisin EA; Vaulina OS; Lisina II; Petrov OF Phys Chem Chem Phys; 2022 Jun; 24(23):14150-14158. PubMed ID: 35648110 [TBL] [Abstract][Full Text] [Related]
7. Active Ornstein-Uhlenbeck model for self-propelled particles with inertia. Nguyen GHP; Wittmann R; Löwen H J Phys Condens Matter; 2021 Nov; 34(3):. PubMed ID: 34598179 [TBL] [Abstract][Full Text] [Related]
8. Self-organized vortices of circling self-propelled particles and curved active flagella. Yang Y; Qiu F; Gompper G Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012720. PubMed ID: 24580270 [TBL] [Abstract][Full Text] [Related]
9. Inertial dynamics of an active Brownian particle. Mayer Martins J; Wittkowski R Phys Rev E; 2022 Sep; 106(3-1):034616. PubMed ID: 36266913 [TBL] [Abstract][Full Text] [Related]
10. Noise and diffusion of a vibrated self-propelled granular particle. Walsh L; Wagner CG; Schlossberg S; Olson C; Baskaran A; Menon N Soft Matter; 2017 Dec; 13(47):8964-8968. PubMed ID: 29152630 [TBL] [Abstract][Full Text] [Related]
11. Time-dependent inertia of self-propelled particles: The Langevin rocket. Sprenger AR; Jahanshahi S; Ivlev AV; Löwen H Phys Rev E; 2021 Apr; 103(4-1):042601. PubMed ID: 34005997 [TBL] [Abstract][Full Text] [Related]
12. Helical paths, gravitaxis, and separation phenomena for mass-anisotropic self-propelling colloids: Experiment versus theory. Campbell AI; Wittkowski R; Ten Hagen B; Löwen H; Ebbens SJ J Chem Phys; 2017 Aug; 147(8):084905. PubMed ID: 28863518 [TBL] [Abstract][Full Text] [Related]
13. Active dipole clusters: From helical motion to fission. Kaiser A; Popowa K; Löwen H Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):012301. PubMed ID: 26274156 [TBL] [Abstract][Full Text] [Related]
14. Rapid adaptation to Coriolis force perturbations of arm trajectory. Lackner JR; Dizio P J Neurophysiol; 1994 Jul; 72(1):299-313. PubMed ID: 7965013 [TBL] [Abstract][Full Text] [Related]
15. Inertial effects on rectification and diffusion of active Brownian particles in an asymmetric channel. Khatri N; Kapral R J Chem Phys; 2023 Mar; 158(12):124903. PubMed ID: 37003720 [TBL] [Abstract][Full Text] [Related]
16. Self-propulsion of symmetric chemically active particles: Point-source model and experiments on camphor disks. Boniface D; Cottin-Bizonne C; Kervil R; Ybert C; Detcheverry F Phys Rev E; 2019 Jun; 99(6-1):062605. PubMed ID: 31330666 [TBL] [Abstract][Full Text] [Related]
17. Self-propelled Brownian spinning top: dynamics of a biaxial swimmer at low Reynolds numbers. Wittkowski R; Löwen H Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021406. PubMed ID: 22463211 [TBL] [Abstract][Full Text] [Related]
18. Rotational propulsion enabled by inertia. Nadal F; Pak OS; Zhu L; Brandt L; Lauga E Eur Phys J E Soft Matter; 2014 Jul; 37(7):16. PubMed ID: 25034393 [TBL] [Abstract][Full Text] [Related]