These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 31330666)

  • 1. Self-propulsion of symmetric chemically active particles: Point-source model and experiments on camphor disks.
    Boniface D; Cottin-Bizonne C; Kervil R; Ybert C; Detcheverry F
    Phys Rev E; 2019 Jun; 99(6-1):062605. PubMed ID: 31330666
    [TBL] [Abstract][Full Text] [Related]  

  • 2. From diffusive mass transfer in Stokes flow to low Reynolds number Marangoni boats.
    Ender H; Kierfeld J
    Eur Phys J E Soft Matter; 2021 Feb; 44(1):4. PubMed ID: 33580288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clustering-induced self-propulsion of isotropic autophoretic particles.
    Varma A; Montenegro-Johnson TD; Michelin S
    Soft Matter; 2018 Sep; 14(35):7155-7173. PubMed ID: 30058650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface swimmers, harnessing the interface to self-propel.
    Grosjean G; Hubert M; Collard Y; Pillitteri S; Vandewalle N
    Eur Phys J E Soft Matter; 2018 Nov; 41(11):137. PubMed ID: 30467607
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthetic Chemotaxis and Collective Behavior in Active Matter.
    Liebchen B; Löwen H
    Acc Chem Res; 2018 Dec; 51(12):2982-2990. PubMed ID: 30375857
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phoretic and hydrodynamic interactions of weakly confined autophoretic particles.
    Kanso E; Michelin S
    J Chem Phys; 2019 Jan; 150(4):044902. PubMed ID: 30709320
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Autophoretic locomotion from geometric asymmetry.
    Michelin S; Lauga E
    Eur Phys J E Soft Matter; 2015 Feb; 38(2):91. PubMed ID: 25676446
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Active particles in noninertial frames: How to self-propel on a carousel.
    Löwen H
    Phys Rev E; 2019 Jun; 99(6-1):062608. PubMed ID: 31330628
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Propulsion Mechanism of Flexible Microbead Swimmers in the Low Reynolds Number Regime.
    Li YH; Chen SC
    Micromachines (Basel); 2020 Dec; 11(12):. PubMed ID: 33333847
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Guidance of active particles at liquid-liquid interfaces near surfaces.
    Palacios LS; Katuri J; Pagonabarraga I; Sánchez S
    Soft Matter; 2019 Aug; 15(32):6581-6588. PubMed ID: 31365015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced phoretic self-propulsion of active colloids through surface charge asymmetry.
    Shrestha A; Olvera de la Cruz M
    Phys Rev E; 2024 Jan; 109(1-1):014613. PubMed ID: 38366412
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The efficiency of self-phoretic propulsion mechanisms with surface reaction heterogeneity.
    Kreissl P; Holm C; de Graaf J
    J Chem Phys; 2016 May; 144(20):204902. PubMed ID: 27250326
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemically active filaments: analysis and extensions of slender phoretic theory.
    Katsamba P; Butler MD; Koens L; Montenegro-Johnson TD
    Soft Matter; 2022 Sep; 18(37):7051-7063. PubMed ID: 36048579
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Geometric tuning of self-propulsion for Janus catalytic particles.
    Michelin S; Lauga E
    Sci Rep; 2017 Feb; 7():42264. PubMed ID: 28205563
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-body correlations and conditional forces in suspensions of active hard disks.
    Härtel A; Richard D; Speck T
    Phys Rev E; 2018 Jan; 97(1-1):012606. PubMed ID: 29448434
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-Reynolds-number swimmer utilizing surface traveling waves: analytical and experimental study.
    Setter E; Bucher I; Haber S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066304. PubMed ID: 23005203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shaping the gradients driving phoretic micro-swimmers: influence of swimming speed, budget of carbonic acid and environment.
    Möller N; Liebchen B; Palberg T
    Eur Phys J E Soft Matter; 2021 Mar; 44(3):41. PubMed ID: 33759011
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Population splitting of rodlike swimmers in Couette flow.
    Nili H; Kheyri M; Abazari J; Fahimniya A; Naji A
    Soft Matter; 2017 Jun; 13(25):4494-4506. PubMed ID: 28584884
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-motile swimmers: Ultrasound driven spherical model.
    Mojahed A; Rajabi M
    Ultrasonics; 2018 May; 86():1-5. PubMed ID: 29407276
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Disintegrating polymer multilayers to jump-start colloidal micromotors.
    Fernández-Medina M; Qian X; Hovorka O; Städler B
    Nanoscale; 2019 Jan; 11(2):733-741. PubMed ID: 30565629
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.