These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Persistent random walk of cells involving anomalous effects and random death. Fedotov S; Tan A; Zubarev A Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):042124. PubMed ID: 25974455 [TBL] [Abstract][Full Text] [Related]
5. Peclet number as affected by molecular diffusion controls transient anomalous transport in alluvial aquifer-aquitard complexes. Zhang Y; Green CT; Tick GR J Contam Hydrol; 2015; 177-178():220-38. PubMed ID: 26001981 [TBL] [Abstract][Full Text] [Related]
6. Two-particle anomalous diffusion: probability density functions and self-similar stochastic processes. Pagnini G; Mura A; Mainardi F Philos Trans A Math Phys Eng Sci; 2013 May; 371(1990):20120154. PubMed ID: 23547231 [TBL] [Abstract][Full Text] [Related]
7. Path integrals for fractional Brownian motion and fractional Gaussian noise. Meerson B; Bénichou O; Oshanin G Phys Rev E; 2022 Dec; 106(6):L062102. PubMed ID: 36671110 [TBL] [Abstract][Full Text] [Related]
8. Space-time duality and high-order fractional diffusion. Kelly JF; Meerschaert MM Phys Rev E; 2019 Feb; 99(2-1):022122. PubMed ID: 30934285 [TBL] [Abstract][Full Text] [Related]
9. Quantifying non-ergodicity of anomalous diffusion with higher order moments. Schwarzl M; Godec A; Metzler R Sci Rep; 2017 Jun; 7(1):3878. PubMed ID: 28634366 [TBL] [Abstract][Full Text] [Related]
10. Fractional Brownian motion with a reflecting wall. Wada AHO; Vojta T Phys Rev E; 2018 Feb; 97(2-1):020102. PubMed ID: 29548098 [TBL] [Abstract][Full Text] [Related]
11. Fractional dynamics on networks: emergence of anomalous diffusion and Lévy flights. Riascos AP; Mateos JL Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032809. PubMed ID: 25314484 [TBL] [Abstract][Full Text] [Related]
12. Diffusion control for a tempered anomalous diffusion system using fractional-order PI controllers. Juan Chen ; Zhuang B; Chen Y; Cui B ISA Trans; 2018 Nov; 82():94-106. PubMed ID: 28499463 [TBL] [Abstract][Full Text] [Related]
13. Generalized fractional diffusion equations for accelerating subdiffusion and truncated Lévy flights. Chechkin AV; Gonchar VY; Gorenflo R; Korabel N; Sokolov IM Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 1):021111. PubMed ID: 18850790 [TBL] [Abstract][Full Text] [Related]
14. Rectified brownian transport in corrugated channels: Fractional brownian motion and Lévy flights. Ai BQ; Shao ZG; Zhong WR J Chem Phys; 2012 Nov; 137(17):174101. PubMed ID: 23145711 [TBL] [Abstract][Full Text] [Related]
16. Anomalous diffusion in stochastic systems with nonhomogeneously distributed traps. Srokowski T Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):052141. PubMed ID: 26066153 [TBL] [Abstract][Full Text] [Related]
17. Anomalous diffusion as modeled by a nonstationary extension of Brownian motion. Cushman JH; O'Malley D; Park M Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Mar; 79(3 Pt 1):032101. PubMed ID: 19391995 [TBL] [Abstract][Full Text] [Related]
18. Fractional Brownian motion with random Hurst exponent: Accelerating diffusion and persistence transitions. Balcerek M; Burnecki K; Thapa S; Wyłomańska A; Chechkin A Chaos; 2022 Sep; 32(9):093114. PubMed ID: 36182362 [TBL] [Abstract][Full Text] [Related]
19. Fractional Lévy stable motion can model subdiffusive dynamics. Burnecki K; Weron A Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 1):021130. PubMed ID: 20866798 [TBL] [Abstract][Full Text] [Related]
20. Fractional Fokker-Planck equation with tempered α-stable waiting times: langevin picture and computer simulation. Gajda J; Magdziarz M Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 1):011117. PubMed ID: 20866575 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]