These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 31330751)

  • 1. Propulsion performance of a two-dimensional flapping airfoil with wake map and dynamic mode decomposition analysis.
    Zheng H; Xie F; Zheng Y; Ji T; Zhu Z
    Phys Rev E; 2019 Jun; 99(6-1):063109. PubMed ID: 31330751
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transitions in the wake of a flapping foil.
    Godoy-Diana R; Aider JL; Wesfreid JE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jan; 77(1 Pt 2):016308. PubMed ID: 18351935
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multifidelity kinematic parameter optimization of a flapping airfoil.
    Zheng H; Xie F; Ji T; Zhu Z; Zheng Y
    Phys Rev E; 2020 Jan; 101(1-1):013107. PubMed ID: 32069665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamical features of the wake behind a pitching foil.
    Deng J; Sun L; Shao X
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):063013. PubMed ID: 26764810
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional transition after wake deflection behind a flapping foil.
    Deng J; Caulfield CP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):043017. PubMed ID: 25974590
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wake and aeroelasticity of a flexible pitching foil.
    D'Adamo J; Collaud M; Sosa R; Godoy-Diana R
    Bioinspir Biomim; 2022 May; 17(4):. PubMed ID: 35523157
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Route to transition in propulsive performance of oscillating foil.
    Verma S; Hemmati A
    Phys Rev E; 2022 Apr; 105(4-2):045102. PubMed ID: 35590627
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vortex-wake interactions of a flapping foil that models animal swimming and flight.
    Lentink D; Muijres FT; Donker-Duyvis FJ; van Leeuwen JL
    J Exp Biol; 2008 Jan; 211(Pt 2):267-73. PubMed ID: 18165254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics of the vortex wakes of flying and swimming vertebrates.
    Rayner JM
    Symp Soc Exp Biol; 1995; 49():131-55. PubMed ID: 8571221
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of torsional stiffness and inertia on the dynamics of low aspect ratio flapping wings.
    Xiao Q; Hu J; Liu H
    Bioinspir Biomim; 2014 Mar; 9(1):016008. PubMed ID: 24434625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unsupervised clustering and performance prediction of vortex wakes from bio-inspired propulsors.
    Calvet AG; Dave M; Franck JA
    Bioinspir Biomim; 2021 Jun; 16(4):. PubMed ID: 33984842
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flow Control around the UAS-S45 Pitching Airfoil Using a Dynamically Morphing Leading Edge (DMLE): A Numerical Study.
    Bashir M; Zonzini N; Botez RM; Ceruti A; Wong T
    Biomimetics (Basel); 2023 Jan; 8(1):. PubMed ID: 36810382
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vortex interactions with flapping wings and fins can be unpredictable.
    Lentink D; Van Heijst GF; Muijres FT; Van Leeuwen JL
    Biol Lett; 2010 Jun; 6(3):394-7. PubMed ID: 20129947
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement of aerodynamic performance of a heaving airfoil using synthetic-jet based active flow control.
    Wang C; Tang H
    Bioinspir Biomim; 2018 May; 13(4):046005. PubMed ID: 29648545
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bénard-von Kármán vortex street in a spin-orbit-coupled Bose-Einstein condensate.
    Yang XY; Li XL; Tang N; Zhou ZK; Song L; Zhang J; Shi YR
    Phys Rev E; 2020 Sep; 102(3-1):032217. PubMed ID: 33076038
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The wake structure and thrust performance of a rigid low-aspect-ratio pitching panel.
    Buchholz JH; Smits AJ
    J Fluid Mech; 2008 Apr; 603():331-365. PubMed ID: 19746195
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Classifying vortex wakes using neural networks.
    Colvert B; Alsalman M; Kanso E
    Bioinspir Biomim; 2018 Feb; 13(2):025003. PubMed ID: 29334075
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wake structure and hydrodynamic performance of flapping foils mimicking fish fin kinematics.
    Liu W; Li N; Zhao J; Su Y
    Saudi J Biol Sci; 2017 Sep; 24(6):1344-1354. PubMed ID: 28855830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extracting signature responses from respiratory flows: Low-dimensional analyses on Direct Numerical Simulation-predicted wakes of a flapping uvula.
    Xi J; Wang J; Si XA; Zheng S; Donepudi R; Dong H
    Int J Numer Method Biomed Eng; 2020 Dec; 36(12):e3406. PubMed ID: 33070467
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hawkmoth flight stability in turbulent vortex streets.
    Ortega-Jimenez VM; Greeter JS; Mittal R; Hedrick TL
    J Exp Biol; 2013 Dec; 216(Pt 24):4567-79. PubMed ID: 24072794
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.