BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

336 related articles for article (PubMed ID: 31330828)

  • 1.
    Han Y; Tang A; Yu J; Cheng T; Wang J; Yang W; Pan H; Zhang Q
    Int J Mol Sci; 2019 Jul; 20(14):. PubMed ID: 31330828
    [No Abstract]   [Full Text] [Related]  

  • 2. Genome-wide analysis reveals widespread roles for RcREM genes in floral organ development in Rosa chinensis.
    Liu J; Wu S; Sun J; Sun J; Wang H; Cao X; Lu J; Jalal A; Wang C
    Genomics; 2021 Nov; 113(6):3881-3894. PubMed ID: 34571174
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-wide identification and functional analysis of JmjC domain-containing genes in flower development of Rosa chinensis.
    Dong Y; Lu J; Liu J; Jalal A; Wang C
    Plant Mol Biol; 2020 Mar; 102(4-5):417-430. PubMed ID: 31898146
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptome of the floral transition in Rosa chinensis 'Old Blush'.
    Guo X; Yu C; Luo L; Wan H; Zhen N; Xu T; Tan J; Pan H; Zhang Q
    BMC Genomics; 2017 Feb; 18(1):199. PubMed ID: 28228130
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A miR172 target-deficient AP2-like gene correlates with the double flower phenotype in roses.
    François L; Verdenaud M; Fu X; Ruleman D; Dubois A; Vandenbussche M; Bendahmane A; Raymond O; Just J; Bendahmane M
    Sci Rep; 2018 Aug; 8(1):12912. PubMed ID: 30150746
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An APETALA1-like gene of soybean regulates flowering time and specifies floral organs.
    Chi Y; Huang F; Liu H; Yang S; Yu D
    J Plant Physiol; 2011 Dec; 168(18):2251-9. PubMed ID: 21963279
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptome and gene expression analysis during flower blooming in Rosa chinensis 'Pallida'.
    Yan H; Zhang H; Chen M; Jian H; Baudino S; Caissard JC; Bendahmane M; Li S; Zhang T; Zhou N; Qiu X; Wang Q; Tang K
    Gene; 2014 Apr; 540(1):96-103. PubMed ID: 24530310
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MawuAP1 promotes flowering and fruit development in the basal angiosperm Magnolia wufengensis (Magnoliaceae).
    Li C; Chen L; Fan X; Qi W; Ma J; Tian T; Zhou T; Ma L; Chen F
    Tree Physiol; 2020 Aug; 40(9):1247-1259. PubMed ID: 32348527
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative transcriptome analysis of the floral transition in Rosa chinensis 'Old Blush' and R. odorata var. gigantea.
    Guo X; Yu C; Luo L; Wan H; Li Y; Wang J; Cheng T; Pan H; Zhang Q
    Sci Rep; 2017 Jul; 7(1):6068. PubMed ID: 28729527
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Disruption of transcription factor RhMYB123 causes the transformation of stamen to malformed petal in rose (Rosa hybrida).
    Li K; Li Y; Wang Y; Li Y; He J; Li Y; Du L; Gao Y; Ma N; Gao J; Zhou X
    Plant Cell Rep; 2022 Dec; 41(12):2293-2303. PubMed ID: 35999377
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The expression level of Rosa Terminal Flower 1 (RTFL1) is related with recurrent flowering in roses.
    Wang LN; Liu YF; Zhang YM; Fang RX; Liu QL
    Mol Biol Rep; 2012 Apr; 39(4):3737-46. PubMed ID: 21739143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alternate expression of CONSTANS-LIKE 4 in short days and CONSTANS in long days facilitates day-neutral response in Rosa chinensis.
    Lu J; Sun J; Jiang A; Bai M; Fan C; Liu J; Ning G; Wang C
    J Exp Bot; 2020 Jul; 71(14):4057-4068. PubMed ID: 32227095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genotype of FLOWERING LOCUS T homologue contributes to flowering time differences in wild and cultivated roses.
    Otagaki S; Ogawa Y; Hibrand-Saint Oyant L; Foucher F; Kawamura K; Horibe T; Matsumoto S
    Plant Biol (Stuttg); 2015 Jul; 17(4):808-15. PubMed ID: 25545704
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative transcriptomic analysis reveals novel roles of transcription factors and hormones during the flowering induction and floral bud differentiation in sweet cherry trees (Prunus avium L. cv. Bing).
    Villar L; Lienqueo I; Llanes A; Rojas P; Perez J; Correa F; Sagredo B; Masciarelli O; Luna V; Almada R
    PLoS One; 2020; 15(3):e0230110. PubMed ID: 32163460
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ectopic expression of Jatropha curcas APETALA1 (JcAP1) caused early flowering in Arabidopsis, but not in Jatropha.
    Tang M; Tao YB; Xu ZF
    PeerJ; 2016; 4():e1969. PubMed ID: 27168978
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The tomato NAC transcription factor SlNAM2 is involved in flower-boundary morphogenesis.
    Hendelman A; Stav R; Zemach H; Arazi T
    J Exp Bot; 2013 Dec; 64(18):5497-507. PubMed ID: 24085581
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arabidopsis BLADE-ON-PETIOLE1 and 2 promote floral meristem fate and determinacy in a previously undefined pathway targeting APETALA1 and AGAMOUS-LIKE24.
    Xu M; Hu T; McKim SM; Murmu J; Haughn GW; Hepworth SR
    Plant J; 2010 Sep; 63(6):974-89. PubMed ID: 20626659
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetics and genomics of flower initiation and development in roses.
    Bendahmane M; Dubois A; Raymond O; Bris ML
    J Exp Bot; 2013 Feb; 64(4):847-57. PubMed ID: 23364936
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Aquilegia FRUITFULL-like genes play key roles in leaf morphogenesis and inflorescence development.
    Pabón-Mora N; Sharma B; Holappa LD; Kramer EM; Litt A
    Plant J; 2013 Apr; 74(2):197-212. PubMed ID: 23294330
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two lily SEPALLATA-like genes cause different effects on floral formation and floral transition in Arabidopsis.
    Tzeng TY; Hsiao CC; Chi PJ; Yang CH
    Plant Physiol; 2003 Nov; 133(3):1091-101. PubMed ID: 14526112
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.