These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 31330881)
1. Highly Efficient and Stable Removal of Arsenic by Live Cell Fabricated Magnetic Nanoparticles. Kim HK; Jeong SW; Yang JE; Choi YJ Int J Mol Sci; 2019 Jul; 20(14):. PubMed ID: 31330881 [TBL] [Abstract][Full Text] [Related]
2. Adsorption of humic acid onto nanoscale zerovalent iron and its effect on arsenic removal. Giasuddin AB; Kanel SR; Choi H Environ Sci Technol; 2007 Mar; 41(6):2022-7. PubMed ID: 17410800 [TBL] [Abstract][Full Text] [Related]
3. Biosynthesis of gold nanoparticles by the extreme bacterium Li J; Li Q; Ma X; Tian B; Li T; Yu J; Dai S; Weng Y; Hua Y Int J Nanomedicine; 2016; 11():5931-5944. PubMed ID: 27877039 [No Abstract] [Full Text] [Related]
4. Adsorption behavior and mechanism of different arsenic species on mesoporous MnFe Hu Q; Liu Y; Gu X; Zhao Y Chemosphere; 2017 Aug; 181():328-336. PubMed ID: 28453965 [TBL] [Abstract][Full Text] [Related]
5. Green synthesis of graphene oxide and magnetite nanoparticles and their arsenic removal efficiency from arsenic contaminated soil. Akhtar MS; Jutt DSR; Aslam S; Nawaz R; Irshad MA; Khan M; Khairy M; Irfan A; Al-Hussain SA; Zaki MEA Sci Rep; 2024 Oct; 14(1):23094. PubMed ID: 39367070 [TBL] [Abstract][Full Text] [Related]
6. Simultaneous removal of arsenite and arsenate from mining wastewater using ZIF-8 embedded with iron nanoparticles. Yin L; Li W; Lin S; Owens G; Chen Z Chemosphere; 2022 Oct; 304():135269. PubMed ID: 35691398 [TBL] [Abstract][Full Text] [Related]
7. Imposed Environmental Stresses Facilitate Cell-Free Nanoparticle Formation by Deinococcus radiodurans. Chen A; Contreras LM; Keitz BK Appl Environ Microbiol; 2017 Sep; 83(18):. PubMed ID: 28687649 [TBL] [Abstract][Full Text] [Related]
8. Arsenic entrapment by nanocrystals of Al-magnetite: The role of Al in crystal growth and As retention. Freitas ET; Stroppa DG; Montoro LA; de Mello JW; Gasparon M; Ciminelli VS Chemosphere; 2016 Sep; 158():91-9. PubMed ID: 27258899 [TBL] [Abstract][Full Text] [Related]
9. Fe-FeS Min X; Li Y; Ke Y; Shi M; Chai L; Xue K Water Sci Technol; 2017 Jul; 76(1-2):192-200. PubMed ID: 28708624 [TBL] [Abstract][Full Text] [Related]
10. Arsenic(V) removal from groundwater using nano scale zero-valent iron as a colloidal reactive barrier material. Kanel SR; Greneche JM; Choi H Environ Sci Technol; 2006 Mar; 40(6):2045-50. PubMed ID: 16570634 [TBL] [Abstract][Full Text] [Related]
11. Efficient removal of arsenic(III) from aqueous media using magnetic polyaniline-doped strontium-titanium nanocomposite. Mohammadi Nodeh MK; Gabris MA; Rashidi Nodeh H; Esmaeili Bidhendi M Environ Sci Pollut Res Int; 2018 Jun; 25(17):16864-16874. PubMed ID: 29619640 [TBL] [Abstract][Full Text] [Related]
12. Arsenic(V) removal from underground water by magnetic nanoparticles synthesized from waste red mud. Akin I; Arslan G; Tor A; Ersoz M; Cengeloglu Y J Hazard Mater; 2012 Oct; 235-236():62-8. PubMed ID: 22846216 [TBL] [Abstract][Full Text] [Related]
13. Distinctive arsenic(V) trapping modes by magnetite nanoparticles induced by different sorption processes. Wang Y; Morin G; Ona-Nguema G; Juillot F; Calas G; Brown GE Environ Sci Technol; 2011 Sep; 45(17):7258-66. PubMed ID: 21809819 [TBL] [Abstract][Full Text] [Related]
14. Mesoporous (organo) silica decorated with magnetic nanoparticles as a reusable nanoadsorbent for arsenic removal from water samples. Hasanzadeh M; Farajbakhsh F; Shadjou N; Jouyban A Environ Technol; 2015; 36(1-4):36-44. PubMed ID: 25409581 [TBL] [Abstract][Full Text] [Related]
15. Surface modified mesostructured iron oxyhydroxide: synthesis, ecotoxicity, and application. Choi JW; Mahendran B; Chung SG; Kim SB; Lee SH Water Environ Res; 2014 Dec; 86(12):2338-46. PubMed ID: 25654937 [TBL] [Abstract][Full Text] [Related]
16. Preparation of nanoscale iron (oxide, oxyhydroxides and zero-valent) particles derived from blueberries: Reactivity, characterization and removal mechanism of arsenate. Manquián-Cerda K; Cruces E; Angélica Rubio M; Reyes C; Arancibia-Miranda N Ecotoxicol Environ Saf; 2017 Nov; 145():69-77. PubMed ID: 28708983 [TBL] [Abstract][Full Text] [Related]
17. Green biosynthesis of magnetic iron oxide (Fe Patra JK; Baek KH J Photochem Photobiol B; 2017 Aug; 173():291-300. PubMed ID: 28623821 [TBL] [Abstract][Full Text] [Related]
18. From the iron boring scraps to superparamagnetic nanoparticles through an aerobic biological route. Daneshvar M; Hosseini MR J Hazard Mater; 2018 Sep; 357():393-400. PubMed ID: 29913371 [TBL] [Abstract][Full Text] [Related]
19. Synthesis of novel biochar from waste plant litter biomass for the removal of Arsenic (III and V) from aqueous solution: A mechanism characterization, kinetics and thermodynamics. Verma L; Singh J J Environ Manage; 2019 Oct; 248():109235. PubMed ID: 31310938 [TBL] [Abstract][Full Text] [Related]
20. Ferrate(VI)-induced arsenite and arsenate removal by in situ structural incorporation into magnetic iron(III) oxide nanoparticles. Prucek R; Tuček J; Kolařík J; Filip J; Marušák Z; Sharma VK; Zbořil R Environ Sci Technol; 2013 Apr; 47(7):3283-92. PubMed ID: 23451768 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]