These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 31330888)

  • 1. Surface, Interface, and Temperature Effects on the Phase Separation and Nanoparticle Self Assembly of Bi-Metallic Ni0.5Ag0.5: A Molecular Dynamics Study.
    Allaire RH; Dhakane A; Emery R; Ganesh P; Rack PD; Kondic L; Cummings L; Fuentes-Cabrera M
    Nanomaterials (Basel); 2019 Jul; 9(7):. PubMed ID: 31330888
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication and photocatalytic activities in visible and UV light regions of Ag@TiO2 and NiAg@TiO2 nanoparticles.
    Chuang HY; Chen DH
    Nanotechnology; 2009 Mar; 20(10):105704. PubMed ID: 19417532
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and Catalytic Study of NiAg Bimetallic Core-Shell Nanoparticles.
    Wojtaszek K; Cebula F; Rutkowski B; Wytrwal M; Csapó E; Wojnicki M
    Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676395
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interdiffusion and surface-sandwich ordering in initial Ni-core-Pd-shell nanoparticle.
    Evteev AV; Levchenko EV; Belova IV; Murch GE
    Phys Chem Chem Phys; 2009 May; 11(17):3233-40. PubMed ID: 19370219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diverse melting modes and structural collapse of hollow bimetallic core-shell nanoparticles: a perspective from molecular dynamics simulations.
    Huang R; Shao GF; Zeng XM; Wen YH
    Sci Rep; 2014 Nov; 4():7051. PubMed ID: 25394424
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental investigations and phase-field simulations of triple-phase-separation kinetics within liquid ternary Co-Cu-Pb immiscible alloys.
    Wu YH; Wang WL; Yan N; Wei B
    Phys Rev E; 2017 May; 95(5-1):052111. PubMed ID: 28618464
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In-flight gas phase growth of metal/multi layer graphene core shell nanoparticles with controllable sizes.
    Sengar SK; Mehta BR; Kumar R; Singh V
    Sci Rep; 2013 Oct; 3():2814. PubMed ID: 24100702
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Surface Modifications to Single and Multilayer Graphene Temperature Coefficient of Resistance.
    Torres J; Liu Y; So S; Yi H; Park S; Lee JK; Lim SC; Yun M
    ACS Appl Mater Interfaces; 2020 Oct; 12(43):48890-48898. PubMed ID: 32985174
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Liquid-liquid phase separation of freely falling undercooled ternary Fe-Cu-Sn alloy.
    Wang WL; Wu YH; Li LH; Zhai W; Zhang XM; Wei B
    Sci Rep; 2015 Nov; 5():16335. PubMed ID: 26552711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the melting point depression, coalescence, and chemical ordering of bimetallic nanoparticles: the miscible Ni-Pt system.
    Toulkeridou E; Kioseoglou J; Grammatikopoulos P
    Nanoscale Adv; 2022 Nov; 4(22):4819-4828. PubMed ID: 36381515
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth of three-shell onionlike bimetallic nanoparticles.
    Baletto F; Mottet C; Ferrando R
    Phys Rev Lett; 2003 Apr; 90(13):135504. PubMed ID: 12689304
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoparticle self-assembly at the interface of liquid crystal droplets.
    Rahimi M; Roberts TF; Armas-Pérez JC; Wang X; Bukusoglu E; Abbott NL; de Pablo JJ
    Proc Natl Acad Sci U S A; 2015 Apr; 112(17):5297-302. PubMed ID: 25870304
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal Stability of Platinum-Cobalt Bimetallic Nanoparticles: Chemically Disordered Alloys, Ordered Intermetallics, and Core-Shell Structures.
    Huang R; Shao GF; Zhang Y; Wen YH
    ACS Appl Mater Interfaces; 2017 Apr; 9(14):12486-12493. PubMed ID: 28349693
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interfacially formed organized planar inorganic, polymeric and composite nanostructures.
    Khomutov GB
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):79-116. PubMed ID: 15571664
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of organic vapors on Au, Ag, and Au-Ag alloy nanoparticle films with adsorbed 2,6-dimethylphenyl isocyanide.
    Kim K; Kim KL; Shin KS
    J Colloid Interface Sci; 2013 Dec; 411():194-7. PubMed ID: 24054162
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An ab initio study of the nickel-catalyzed transformation of amorphous carbon into graphene in rapid thermal processing.
    Chen S; Xiong W; Zhou YS; Lu YF; Zeng XC
    Nanoscale; 2016 May; 8(18):9746-55. PubMed ID: 27117235
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of the Core Location on the Structural Stability of Ni-Au Core-Shell Nanoparticles.
    Schnedlitz M; Fernandez-Perea R; Knez D; Lasserus M; Schiffmann A; Hofer F; Hauser AW; de Lara-Castells MP; Ernst WE
    J Phys Chem C Nanomater Interfaces; 2019 Aug; 123(32):20037-20043. PubMed ID: 33014236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phase diagram and structural evolution of Ag-Au bimetallic nanoparticles: molecular dynamics simulations.
    Yeo SC; Kim DH; Shin K; Lee HM
    Phys Chem Chem Phys; 2012 Feb; 14(8):2791-6. PubMed ID: 22270598
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generation of Subsurface Voids, Incubation Effect, and Formation of Nanoparticles in Short Pulse Laser Interactions with Bulk Metal Targets in Liquid: Molecular Dynamics Study.
    Shih CY; Shugaev MV; Wu C; Zhigilei LV
    J Phys Chem C Nanomater Interfaces; 2017 Aug; 121(30):16549-16567. PubMed ID: 28798858
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Molecular Dynamics Study of Ag-Ni Nanometric Multilayers: Thermal Behavior and Stability.
    Baras F; Politano O; Li Y; Turlo V
    Nanomaterials (Basel); 2023 Jul; 13(14):. PubMed ID: 37513145
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.