BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

352 related articles for article (PubMed ID: 31330919)

  • 1. Human Activity Recognition Using Inertial Sensors in a Smartphone: An Overview.
    Sousa Lima W; Souto E; El-Khatib K; Jalali R; Gama J
    Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31330919
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human Activity Recognition Based on Symbolic Representation Algorithms for Inertial Sensors.
    Sousa Lima W; de Souza Bragança HL; Montero Quispe KG; Pereira Souto EJ
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30463336
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MBOSS: A Symbolic Representation of Human Activity Recognition Using Mobile Sensors.
    Montero Quispe KG; Sousa Lima W; Macêdo Batista D; Souto E
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30544667
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Smartphone Lightweight Method for Human Activity Recognition Based on Information Theory.
    Bragança H; Colonna JG; Lima WS; Souto E
    Sensors (Basel); 2020 Mar; 20(7):. PubMed ID: 32230830
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced Human Activity Recognition Based on Smartphone Sensor Data Using Hybrid Feature Selection Model.
    Ahmed N; Rafiq JI; Islam MR
    Sensors (Basel); 2020 Jan; 20(1):. PubMed ID: 31935943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. w-HAR: An Activity Recognition Dataset and Framework Using Low-Power Wearable Devices.
    Bhat G; Tran N; Shill H; Ogras UY
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32962046
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Walking Recognition in Mobile Devices.
    Casado FE; Rodríguez G; Iglesias R; Regueiro CV; Barro S; Canedo-Rodríguez A
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32098082
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Robust Deep Learning Approach for Position-Independent Smartphone-Based Human Activity Recognition.
    Almaslukh B; Artoli AM; Al-Muhtadi J
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30388855
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Robust Feature Extraction Model for Human Activity Characterization Using 3-Axis Accelerometer and Gyroscope Data.
    Ahmed Bhuiyan R; Ahmed N; Amiruzzaman M; Islam MR
    Sensors (Basel); 2020 Dec; 20(23):. PubMed ID: 33297389
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human Activity Recognition for Indoor Localization Using Smartphone Inertial Sensors.
    Moreira D; Barandas M; Rocha T; Alves P; Santos R; Leonardo R; Vieira P; Gamboa H
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hierarchical classification scheme for real-time recognition of physical activities and postural transitions using smartphone inertial sensors.
    Walid Talha SA; Fleury A; Lecoeuche S
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():1243-1246. PubMed ID: 31946117
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Wearable Inertial Sensor Approach for Locomotion and Localization Recognition on Physical Activity.
    Khan D; Al Mudawi N; Abdelhaq M; Alazeb A; Alotaibi SS; Algarni A; Jalal A
    Sensors (Basel); 2024 Jan; 24(3):. PubMed ID: 38339452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of a smartphone human activity recognition application with able-bodied and stroke participants.
    Capela NA; Lemaire ED; Baddour N; Rudolf M; Goljar N; Burger H
    J Neuroeng Rehabil; 2016 Jan; 13():5. PubMed ID: 26792670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Activity-Aware Sampling Scheme for Mobile Phones in Activity Recognition.
    Chen Z; Chen J; Huang X
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32294935
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A hybrid deep approach to recognizing student activity and monitoring health physique based on accelerometer data from smartphones.
    Xiao L; Luo K; Liu J; Foroughi A
    Sci Rep; 2024 Jun; 14(1):14006. PubMed ID: 38890409
    [TBL] [Abstract][Full Text] [Related]  

  • 16. User-Independent Motion State Recognition Using Smartphone Sensors.
    Gu F; Kealy A; Khoshelham K; Shang J
    Sensors (Basel); 2015 Dec; 15(12):30636-52. PubMed ID: 26690163
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human Activity Recognition using Inertial, Physiological and Environmental Sensors: A Comprehensive Survey.
    Demrozi F; Pravadelli G; Bihorac A; Rashidi P
    IEEE Access; 2020; 8():210816-210836. PubMed ID: 33344100
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using a Hybrid Neural Network and a Regularized Extreme Learning Machine for Human Activity Recognition with Smartphone and Smartwatch.
    Tan TH; Shih JY; Liu SH; Alkhaleefah M; Chang YL; Gochoo M
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36992065
    [TBL] [Abstract][Full Text] [Related]  

  • 19. LSTM Networks Using Smartphone Data for Sensor-Based Human Activity Recognition in Smart Homes.
    Mekruksavanich S; Jitpattanakul A
    Sensors (Basel); 2021 Feb; 21(5):. PubMed ID: 33652697
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using Inertial Sensors to Determine Head Motion-A Review.
    Ionut-Cristian S; Dan-Marius D
    J Imaging; 2021 Dec; 7(12):. PubMed ID: 34940732
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.