BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

351 related articles for article (PubMed ID: 31330919)

  • 21. Position-Aware Indoor Human Activity Recognition Using Multisensors Embedded in Smartphones.
    Wang X; Wang Y; Wu J
    Sensors (Basel); 2024 May; 24(11):. PubMed ID: 38894162
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Leveraging Self-Attention Mechanism for Attitude Estimation in Smartphones.
    Brotchie J; Shao W; Li W; Kealy A
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433607
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Fast and Robust Deep Convolutional Neural Networks for Complex Human Activity Recognition Using Smartphone.
    Qi W; Su H; Yang C; Ferrigno G; De Momi E; Aliverti A
    Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31470521
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Public Domain Dataset for Real-Life Human Activity Recognition Using Smartphone Sensors.
    Garcia-Gonzalez D; Rivero D; Fernandez-Blanco E; Luaces MR
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32295028
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Classification of Human Daily Activities Using Ensemble Methods Based on Smartphone Inertial Sensors.
    Ku Abd Rahim KN; Elamvazuthi I; Izhar LI; Capi G
    Sensors (Basel); 2018 Nov; 18(12):. PubMed ID: 30486242
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Suitability of Smartphone Inertial Sensors for Real-Time Biofeedback Applications.
    Kos A; Tomažič S; Umek A
    Sensors (Basel); 2016 Feb; 16(3):301. PubMed ID: 26927125
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Comparative Study of Feature Selection Approaches for Human Activity Recognition Using Multimodal Sensory Data.
    Amjad F; Khan MH; Nisar MA; Farid MS; Grzegorzek M
    Sensors (Basel); 2021 Mar; 21(7):. PubMed ID: 33805368
    [TBL] [Abstract][Full Text] [Related]  

  • 28. REAL-Time Smartphone Activity Classification Using Inertial Sensors-Recognition of Scrolling, Typing, and Watching Videos While Sitting or Walking.
    Zhuo S; Sherlock L; Dobbie G; Koh YS; Russello G; Lottridge D
    Sensors (Basel); 2020 Jan; 20(3):. PubMed ID: 31991636
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Cascade Ensemble Learning Model for Human Activity Recognition with Smartphones.
    Xu S; Tang Q; Jin L; Pan Z
    Sensors (Basel); 2019 May; 19(10):. PubMed ID: 31109126
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dataset of inertial measurements of smartphones and smartwatches for human activity recognition.
    Matey-Sanz M; Casteleyn S; Granell C
    Data Brief; 2023 Dec; 51():109809. PubMed ID: 38075620
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Advanced Pedestrian Positioning System to Smartphones and Smartwatches.
    Correa A; Munoz Diaz E; Bousdar Ahmed D; Morell A; Lopez Vicario J
    Sensors (Basel); 2016 Nov; 16(11):. PubMed ID: 27845715
    [TBL] [Abstract][Full Text] [Related]  

  • 32. INIM: Inertial Images Construction with Applications to Activity Recognition.
    Daniel N; Klein I
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300524
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Human Physical Activity Recognition Using Smartphone Sensors.
    Voicu RA; Dobre C; Bajenaru L; Ciobanu RI
    Sensors (Basel); 2019 Jan; 19(3):. PubMed ID: 30678039
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhanced Human Activity Recognition Using Wearable Sensors via a Hybrid Feature Selection Method.
    Fan C; Gao F
    Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640754
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Step by Step Towards Effective Human Activity Recognition: A Balance between Energy Consumption and Latency in Health and Wellbeing Applications.
    Cero Dinarević E; Baraković Husić J; Baraković S
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31783705
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stacked deep analytic model for human activity recognition on a UCI HAR database.
    Pang YH; Ping LY; Ling GF; Yin OS; How KW
    F1000Res; 2021; 10():1046. PubMed ID: 35360410
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Smartphone Based Human Activity Recognition with Feature Selection and Dense Neural Network.
    Bashar SK; Al Fahim A; Chon KH
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():5888-5891. PubMed ID: 33019314
    [TBL] [Abstract][Full Text] [Related]  

  • 38. HIT HAR: Human Image Threshing Machine for Human Activity Recognition Using Deep Learning Models.
    Poulose A; Kim JH; Han DS
    Comput Intell Neurosci; 2022; 2022():1808990. PubMed ID: 36248917
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Feature Extraction Methods Proposed for Speech Recognition Are Effective on Road Condition Monitoring Using Smartphone Inertial Sensors.
    Cabral FS; Fukai H; Tamura S
    Sensors (Basel); 2019 Aug; 19(16):. PubMed ID: 31395828
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Modified Kalman Filter for Integrating the Different Rate Data of Gyros and Accelerometers Retrieved from Android Smartphones in the GNSS/IMU Coupled Navigation.
    Yan W; Zhang Q; Wang L; Mao Y; Wang A; Zhao C
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32932662
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.