These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 31330994)

  • 1. Assessment of Validity of Selected Criteria of Fatigue Life Prediction.
    Kluger K; Pawliczek R
    Materials (Basel); 2019 Jul; 12(14):. PubMed ID: 31330994
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of Life-Dependent Material Parameters to Fatigue Life Prediction under Multiaxial and Non-Zero Mean Loading.
    Kluger K; Karolczuk A; Derda S
    Materials (Basel); 2020 Mar; 13(7):. PubMed ID: 32235605
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fatigue Life of Aluminum Alloys Based on Shear and Hydrostatic Strain.
    Łagoda T; Głowacka K; Kurek A
    Materials (Basel); 2020 Oct; 13(21):. PubMed ID: 33138233
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cyclic Tests of Smooth and Notched Specimens Subjected to Bending and Torsion Taking into Account the Effect of Mean Stress.
    Pawliczek R; Rozumek D
    Materials (Basel); 2020 May; 13(9):. PubMed ID: 32384608
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fatigue Prediction of Aluminum Alloys Considering Critical Plane Orientation under Complex Stress States.
    Kurek M
    Materials (Basel); 2020 Sep; 13(17):. PubMed ID: 32887343
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An equivalent strain/Coffin-Manson approach to multiaxial fatigue and life prediction in superelastic Nitinol medical devices.
    Runciman A; Xu D; Pelton AR; Ritchie RO
    Biomaterials; 2011 Aug; 32(22):4987-93. PubMed ID: 21531019
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Validation of Multiaxial Fatigue Strength Criteria on Specimens from Structural Steel in the High-Cycle Fatigue Region.
    Fojtík F; Papuga J; Fusek M; Halama R
    Materials (Basel); 2020 Dec; 14(1):. PubMed ID: 33383926
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Limited Stress Surface Model for Bending and Torsion Fatigue Loading with the Mean Load Value.
    Pawliczek R; Rozumek D
    Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832420
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A New Energy-Critical Plane Damage Parameter for Multiaxial Fatigue Life Prediction of Turbine Blades.
    Yu ZY; Zhu SP; Liu Q; Liu Y
    Materials (Basel); 2017 May; 10(5):. PubMed ID: 28772873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiaxial fatigue modeling for Nitinol shape memory alloys under in-phase loading.
    Mahtabi MJ; Shamsaei N
    J Mech Behav Biomed Mater; 2015 Mar; 55():236-249. PubMed ID: 26594783
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiaxial Fatigue Damage Parameter and Life Prediction without Any Additional Material Constants.
    Yu ZY; Zhu SP; Liu Q; Liu Y
    Materials (Basel); 2017 Aug; 10(8):. PubMed ID: 28792487
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of Changes in Fatigue Damage Caused by Mean Load under Block Loading Conditions.
    Pawliczek R; Lagoda T
    Materials (Basel); 2021 May; 14(11):. PubMed ID: 34067334
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel model for low-cycle multiaxial fatigue life prediction based on the critical plane-damage parameter.
    Liu J; Lv X; Wei Y; Pan X; Jin Y; Wang Y
    Sci Prog; 2020; 103(3):36850420936220. PubMed ID: 32757872
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uniaxial and Multiaxial Fatigue Life Prediction of the Trabecular Bone Based on Physiological Loading: A Comparative Study.
    Fatihhi SJ; Harun MN; Abdul Kadir MR; Abdullah J; Kamarul T; Öchsner A; Syahrom A
    Ann Biomed Eng; 2015 Oct; 43(10):2487-502. PubMed ID: 25828397
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative Analysis of Fatigue EnergyCharacteristics of S355J2 Steel Subjected toMulti-Axis Loads.
    Lachowicz CT; Owsiński R
    Materials (Basel); 2020 May; 13(11):. PubMed ID: 32481750
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental Research on Manson-Coffin Curves for the Frame Material of an Unconventional Vehicle.
    Blatnický M; Dižo J; Sága M; Brůna M; Vaško M
    Materials (Basel); 2022 Feb; 15(5):. PubMed ID: 35268998
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fracture Surface Behavior of 34CrNiMo6 High-Strength Steel Bars with Blind Holes under Bending-Torsion Fatigue.
    Macek W; Branco R; Costa JD; Trembacz J
    Materials (Basel); 2021 Dec; 15(1):. PubMed ID: 35009226
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of testing methods on the flexural fatigue life of human cortical bone.
    Griffin LV; Gibeling JC; Martin RB; Gibson VA; Stover SM
    J Biomech; 1999 Jan; 32(1):105-9. PubMed ID: 10050958
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A mechanical analysis informed fractography study on load-specific fatigue behaviors of Pt-Ir coils used in implantable medical leads.
    Li L; Jiang C; Wang H; Xie H; Li L
    J Mech Behav Biomed Mater; 2021 Apr; 116():104364. PubMed ID: 33545415
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy-Based Approach to Predict Fatigue Life of Asphalt Mixture Using Three-Point Bending Fatigue Test.
    Sun Y; Fang C; Wang J; Ma Z; Ye Y
    Materials (Basel); 2018 Sep; 11(9):. PubMed ID: 30213088
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.