These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 31331049)

  • 1. Single-Cell Point Constrictions for Reagent-Free High-Throughput Mechanical Lysis and Intact Nuclei Isolation.
    Huang X; Xing X; Ng CN; Yobas L
    Micromachines (Basel); 2019 Jul; 10(7):. PubMed ID: 31331049
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Low-Backpressure Single-Cell Point Constriction for Cytosolic Delivery Based on Rapid Membrane Deformations.
    Xing X; Pan Y; Yobas L
    Anal Chem; 2018 Feb; 90(3):1836-1844. PubMed ID: 29308899
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation of intact bacteria from blood by selective cell lysis in a microfluidic porous silica monolith.
    Han JY; Wiederoder M; DeVoe DL
    Microsyst Nanoeng; 2019; 5():30. PubMed ID: 31240109
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On-line cell lysis and DNA extraction on a microfluidic biochip fabricated by microelectromechanical system technology.
    Chen X; Cui DF; Liu CC
    Electrophoresis; 2008 May; 29(9):1844-51. PubMed ID: 18393339
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Handheld mechanical cell lysis chip with ultra-sharp silicon nano-blade arrays for rapid intracellular protein extraction.
    Yun SS; Yoon SY; Song MK; Im SH; Kim S; Lee JH; Yang S
    Lab Chip; 2010 Jun; 10(11):1442-6. PubMed ID: 20480109
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced chromosome extraction from cells using a pinched flow microfluidic device.
    Feng H; Hockin M; Zhang S; Capecchi M; Gale B; Sant H
    Biomed Microdevices; 2020 Mar; 22(2):25. PubMed ID: 32166434
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanowire-integrated microfluidic devices for facile and reagent-free mechanical cell lysis.
    Kim J; Hong JW; Kim DP; Shin JH; Park I
    Lab Chip; 2012 Aug; 12(16):2914-21. PubMed ID: 22722645
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic electrical cell lysis for high-throughput and continuous production of cell-free varicella-zoster virus.
    Won EJ; Thai DA; Duong DD; Lee NY; Song YJ
    J Biotechnol; 2021 Jul; 335():19-26. PubMed ID: 34090951
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reagentless mechanical cell lysis by nanoscale barbs in microchannels for sample preparation.
    Di Carlo D; Jeong KH; Lee LP
    Lab Chip; 2003 Nov; 3(4):287-91. PubMed ID: 15007460
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrolysis of Bacteria Based on Microfluidic Technology.
    Zhao J; Li N; Zhou X; Yu Z; Lan M; Chen S; Miao J; Li Y; Li G; Yang F
    Micromachines (Basel); 2023 Jan; 14(1):. PubMed ID: 36677205
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical-free lysis and fractionation of cells by use of surface acoustic waves for sensitive protein assays.
    Salehi-Reyhani A; Gesellchen F; Mampallil D; Wilson R; Reboud J; Ces O; Willison KR; Cooper JM; Klug DR
    Anal Chem; 2015 Feb; 87(4):2161-9. PubMed ID: 25514590
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical property characterization of hundreds of single nuclei based on microfluidic constriction channel.
    Chang CC; Wang K; Zhang Y; Chen D; Fan B; Hsieh CH; Wang J; Wu MH; Chen J
    Cytometry A; 2018 Aug; 93(8):822-828. PubMed ID: 30063818
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic DNA fragmentation for on-chip genomic analysis.
    Shui L; Bomer JG; Jin M; Carlen ET; van den Berg A
    Nanotechnology; 2011 Dec; 22(49):494013. PubMed ID: 22101733
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a microfluidic device for cell concentration and blood cell-plasma separation.
    Maria MS; Kumar BS; Chandra TS; Sen AK
    Biomed Microdevices; 2015 Dec; 17(6):115. PubMed ID: 26564448
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly Efficient On-Chip Photothermal Cell Lysis for Nucleic Acid Extraction Using Localized Plasmonic Heating of Strongly Absorbing Au Nanoislands.
    Yu ES; Kang BH; Ahn MS; Jung JH; Park JH; Jeong KH
    ACS Appl Mater Interfaces; 2023 Jul; 15(29):34323-34331. PubMed ID: 37435756
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lysis of gram-positive and gram-negative bacteria by antibacterial porous polymeric monolith formed in microfluidic biochips for sample preparation.
    Aly MA; Gauthier M; Yeow J
    Anal Bioanal Chem; 2014 Sep; 406(24):5977-87. PubMed ID: 25059724
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-throughput Nuclear Delivery and Rapid Expression of DNA via Mechanical and Electrical Cell-Membrane Disruption.
    Ding X; Stewart M; Sharei A; Weaver JC; Langer RS; Jensen KF
    Nat Biomed Eng; 2017; 1():. PubMed ID: 28932622
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A high-throughput microfluidic device inspired by the Wheatstone bridge principle for characterizing the mechanical properties of single cells.
    Hu S; Liu T; Xue C; Li Y; Yang Y; Xu X; Liu B; Chen X; Zhao Y; Qin K
    Anal Methods; 2022 Dec; 14(46):4813-4821. PubMed ID: 36382629
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Leveraging the elastic deformability of polydimethylsiloxane microfluidic channels for efficient intracellular delivery.
    Alhmoud H; Alkhaled M; Kaynak BE; Hanay MS
    Lab Chip; 2023 Feb; 23(4):714-726. PubMed ID: 36472226
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Continuous cell introduction and rapid dynamic lysis for high-throughput single-cell analysis on microfludic chips with hydrodynamic focusing.
    Xu CX; Yin XF
    J Chromatogr A; 2011 Feb; 1218(5):726-32. PubMed ID: 21185567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.