These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 31331049)

  • 21. Design, fabrication and characterization of nano-filters in silicon microfluidic channels based on MEMS technology.
    Chen X; Cui D; Chen J
    Electrophoresis; 2009 Sep; 30(18):3168-73. PubMed ID: 19722199
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Performance Evaluation of Fast Microfluidic Thermal Lysis of Bacteria for Diagnostic Sample Preparation.
    Packard MM; Wheeler EK; Alocilja EC; Shusteff M
    Diagnostics (Basel); 2013 Jan; 3(1):105-16. PubMed ID: 26835670
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hierarchical silicon nanospikes membrane for rapid and high-throughput mechanical cell lysis.
    So H; Lee K; Seo YH; Murthy N; Pisano AP
    ACS Appl Mater Interfaces; 2014 May; 6(10):6993-7. PubMed ID: 24805909
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A microfluidic flow-through device for high throughput electrical lysis of bacterial cells based on continuous dc voltage.
    Wang HY; Bhunia AK; Lu C
    Biosens Bioelectron; 2006 Dec; 22(5):582-8. PubMed ID: 16530400
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Lysis gradient centrifugation: a flexible method for the isolation of nuclei from primary cells.
    Katholnig K; Poglitsch M; Hengstschläger M; Weichhart T
    Methods Mol Biol; 2015; 1228():15-23. PubMed ID: 25311118
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of simple and efficient Lab-on-a-Disc platforms for automated chemical cell lysis.
    Jahromi AK; Saadatmand M; Eghbal M; Yeganeh LP
    Sci Rep; 2020 Jul; 10(1):11039. PubMed ID: 32632169
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rapid isolation of nuclei from living immune cells by a single centrifugation through a multifunctional lysis gradient.
    Poglitsch M; Katholnig K; Säemann MD; Weichhart T
    J Immunol Methods; 2011 Oct; 373(1-2):167-73. PubMed ID: 21889513
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High throughput single-cell and multiple-cell micro-encapsulation.
    Lagus TP; Edd JF
    J Vis Exp; 2012 Jun; (64):e4096. PubMed ID: 22733254
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An ultra-high temperature flow-through capillary device for bacterial spore lysis.
    Hukari KW; Patel KD; Renzi RF; West JA
    Electrophoresis; 2010 Aug; 31(16):2804-12. PubMed ID: 20737447
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sample preparation module for bacterial lysis and isolation of DNA from human urine.
    Kulinski MD; Mahalanabis M; Gillers S; Zhang JY; Singh S; Klapperich CM
    Biomed Microdevices; 2009 Jun; 11(3):671-678. PubMed ID: 19130239
    [TBL] [Abstract][Full Text] [Related]  

  • 31. On-chip lysis of mammalian cells through a handheld corona device.
    Escobedo C; Bürgel SC; Kemmerling S; Sauter N; Braun T; Hierlemann A
    Lab Chip; 2015 Jul; 15(14):2990-7. PubMed ID: 26055165
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A membrane-based microfluidic device for mechano-chemical cell manipulation.
    Ravetto A; Hoefer IE; den Toonder JM; Bouten CV
    Biomed Microdevices; 2016 Apr; 18(2):31. PubMed ID: 26941177
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Continuous nucleus extraction by optically-induced cell lysis on a batch-type microfluidic platform.
    Huang SH; Hung LY; Lee GB
    Lab Chip; 2016 Apr; 16(8):1447-56. PubMed ID: 26987542
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Continuous flow microfluidic device for cell separation, cell lysis and DNA purification.
    Chen X; Cui D; Liu C; Li H; Chen J
    Anal Chim Acta; 2007 Feb; 584(2):237-43. PubMed ID: 17386610
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Carbon nanotubes for voltage reduction and throughput enhancement of electrical cell lysis on a lab-on-a-chip.
    Shahini M; Yeow JT
    Nanotechnology; 2011 Aug; 22(32):325705. PubMed ID: 21775777
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microfluidic platform for rapid screening of bacterial cell lysis.
    Fradique R; Azevedo AM; Chu V; Conde JP; Aires-Barros MR
    J Chromatogr A; 2020 Jan; 1610():460539. PubMed ID: 31543341
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An optimized protocol for isolating primary epithelial cell chromatin for ChIP.
    Browne JA; Harris A; Leir SH
    PLoS One; 2014; 9(6):e100099. PubMed ID: 24971909
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Numerical design of a microfluidic chip for probing mechanical properties of cells.
    Ye T; Shi H; Phan-Thien N; Lim CT; Li Y
    J Biomech; 2019 Feb; 84():103-112. PubMed ID: 30591204
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Single-cell chemical lysis on microfluidic chips with arrays of microwells.
    Jen CP; Hsiao JH; Maslov NA
    Sensors (Basel); 2012; 12(1):347-58. PubMed ID: 22368473
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Low-voltage electrical cell lysis using a microfluidic device.
    Wei XY; Li JH; Wang L; Yang F
    Biomed Microdevices; 2019 Feb; 21(1):22. PubMed ID: 30790126
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.