BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

495 related articles for article (PubMed ID: 31331077)

  • 1. Dicarbonyl Stress at the Crossroads of Healthy and Unhealthy Aging.
    Nigro C; Leone A; Fiory F; Prevenzano I; Nicolò A; Mirra P; Beguinot F; Miele C
    Cells; 2019 Jul; 8(7):. PubMed ID: 31331077
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Role of Glyoxalase in Glycation and Carbonyl Stress Induced Metabolic Disorders.
    Saeed M; Kausar MA; Singh R; Siddiqui AJ; Akhter A
    Curr Protein Pept Sci; 2020; 21(9):846-859. PubMed ID: 32368974
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dicarbonyls and glyoxalase in disease mechanisms and clinical therapeutics.
    Rabbani N; Xue M; Thornalley PJ
    Glycoconj J; 2016 Aug; 33(4):513-25. PubMed ID: 27406712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methylglyoxal, a Highly Reactive Dicarbonyl Compound, in Diabetes, Its Vascular Complications, and Other Age-Related Diseases.
    Schalkwijk CG; Stehouwer CDA
    Physiol Rev; 2020 Jan; 100(1):407-461. PubMed ID: 31539311
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methylglyoxal-induced dicarbonyl stress in aging and disease: first steps towards glyoxalase 1-based treatments.
    Rabbani N; Xue M; Thornalley PJ
    Clin Sci (Lond); 2016 Oct; 130(19):1677-96. PubMed ID: 27555612
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dicarbonyl stress in clinical obesity.
    Masania J; Malczewska-Malec M; Razny U; Goralska J; Zdzienicka A; Kiec-Wilk B; Gruca A; Stancel-Mozwillo J; Dembinska-Kiec A; Rabbani N; Thornalley PJ
    Glycoconj J; 2016 Aug; 33(4):581-9. PubMed ID: 27338619
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dicarbonyl Stress in Diabetic Vascular Disease.
    Stratmann B
    Int J Mol Sci; 2022 May; 23(11):. PubMed ID: 35682865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Associations of dicarbonyl stress with complement activation: the CODAM study.
    Xin Y; Hertle E; van der Kallen CJH; Schalkwijk CG; Stehouwer CDA; van Greevenbroek MMJ
    Diabetologia; 2020 May; 63(5):1032-1042. PubMed ID: 31993713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dicarbonyl derived post-translational modifications: chemistry bridging biology and aging-related disease.
    Sibbersen C; Johannsen M
    Essays Biochem; 2020 Feb; 64(1):97-110. PubMed ID: 31939602
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of methylglyoxal and the glyoxalase system in diabetes and other age-related diseases.
    Maessen DE; Stehouwer CD; Schalkwijk CG
    Clin Sci (Lond); 2015 Jun; 128(12):839-61. PubMed ID: 25818485
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Consequences of Dicarbonyl Stress on Skeletal Muscle Proteins in Type 2 Diabetes.
    Ahmad K; Shaikh S; Lee EJ; Lee YH; Choi I
    Curr Protein Pept Sci; 2020; 21(9):878-889. PubMed ID: 31746292
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dicarbonyl stress in cell and tissue dysfunction contributing to ageing and disease.
    Rabbani N; Thornalley PJ
    Biochem Biophys Res Commun; 2015 Mar; 458(2):221-6. PubMed ID: 25666945
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The dicarbonyl proteome: proteins susceptible to dicarbonyl glycation at functional sites in health, aging, and disease.
    Rabbani N; Thornalley PJ
    Ann N Y Acad Sci; 2008 Apr; 1126():124-7. PubMed ID: 18448805
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reaction of metformin with dicarbonyl compounds. Possible implication in the inhibition of advanced glycation end product formation.
    Ruggiero-Lopez D; Lecomte M; Moinet G; Patereau G; Lagarde M; Wiernsperger N
    Biochem Pharmacol; 1999 Dec; 58(11):1765-73. PubMed ID: 10571251
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dicarbonyls induce senescence of human vascular endothelial cells.
    Navarrete Santos A; Jacobs K; Simm A; Glaubitz N; Horstkorte R; Hofmann B
    Mech Ageing Dev; 2017 Sep; 166():24-32. PubMed ID: 28780382
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidants produced by methylglyoxal-modified collagen trigger ER stress and apoptosis in skin fibroblasts.
    Nowotny K; Castro JP; Hugo M; Braune S; Weber D; Pignitter M; Somoza V; Bornhorst J; Schwerdtle T; Grune T
    Free Radic Biol Med; 2018 May; 120():102-113. PubMed ID: 29550330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of glycation derived from α-dicarbonyl compounds on the in vitro digestibility of β-casein and β-lactoglobulin: A model study with glyoxal, methylglyoxal and butanedione.
    Zhao D; Le TT; Larsen LB; Li L; Qin D; Su G; Li B
    Food Res Int; 2017 Dec; 102():313-322. PubMed ID: 29195953
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein and nucleotide damage by glyoxal and methylglyoxal in physiological systems--role in ageing and disease.
    Thornalley PJ
    Drug Metabol Drug Interact; 2008; 23(1-2):125-50. PubMed ID: 18533367
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Influence of Intracellular Glutathione Levels on the Induction of Nrf2-Mediated Gene Expression by α-Dicarbonyl Precursors of Advanced Glycation End Products.
    Zheng L; van Dongen KCW; Bakker W; Miro Estruch I; Rietjens IMCM
    Nutrients; 2022 Mar; 14(7):. PubMed ID: 35405976
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ryanodine Receptor Glycation Favors Mitochondrial Damage in the Senescent Heart.
    Ruiz-Meana M; Minguet M; Bou-Teen D; Miro-Casas E; Castans C; Castellano J; Bonzon-Kulichenko E; Igual A; Rodriguez-Lecoq R; Vázquez J; Garcia-Dorado D
    Circulation; 2019 Feb; 139(7):949-964. PubMed ID: 30586718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.