BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 31331520)

  • 1. Thermal regime effects on the resting metabolic rate of rattlesnakes depend on temperature range.
    Fabrício-Neto A; Bueno Gavira RS; Andrade DV
    J Therm Biol; 2019 Jul; 83():199-205. PubMed ID: 31331520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exposure to fluctuating temperatures leads to reduced immunity and to stress response in rattlesnakes.
    Fabrício-Neto A; Madelaire CB; Gomes FR; Andrade DV
    J Exp Biol; 2019 Nov; 222(Pt 22):. PubMed ID: 31672725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The thermogenesis of digestion in rattlesnakes.
    Tattersall GJ; Milsom WK; Abe AS; Brito SP; Andrade DV
    J Exp Biol; 2004 Feb; 207(Pt 4):579-85. PubMed ID: 14718501
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Daily and seasonal activity patterns of free range South-American rattlesnake (Crotalus durissus).
    Tozetti AM; Martins M
    An Acad Bras Cienc; 2013 Sep; 85(3):1047-52. PubMed ID: 23969850
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Behavioral thermal tolerances of free-ranging rattlesnakes (Crotalus oreganus) during the summer foraging season.
    Putman BJ; Clark RW
    J Therm Biol; 2017 Apr; 65():8-15. PubMed ID: 28343580
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasticity in reproductive output and development in response to thermal variation in ladybird beetle, Menochilus sexmaculatus.
    Singh S; Mishra G; Omkar
    J Therm Biol; 2018 Jan; 71():180-188. PubMed ID: 29301688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of daily fluctuating temperatures on the Drosophila-Leptopilina boulardi parasitoid association.
    Delava E; Fleury F; Gibert P
    J Therm Biol; 2016 Aug; 60():95-102. PubMed ID: 27503721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Loss of the ability to control right-to-left shunt does not influence the metabolic responses to temperature change or long-term fasting in the South American Rattlesnake Crotalus durissus.
    Leite CA; Wang T; Taylor EW; Abe AS; Leite GS; de Andrade DO
    Physiol Biochem Zool; 2014; 87(4):568-75. PubMed ID: 24940921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative thermal ecology parameters of the mexican dusky rattlesnake (Crotalus triseriatus).
    Jaramillo-Alba JL; Díaz de la Vega-Pérez AH; Bucio-Jiménez LE; Méndez-De la Cruz FR; Pérez-Mendoza HA
    J Therm Biol; 2020 Aug; 92():102695. PubMed ID: 32888579
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Seasonal variation in the resting metabolic rate of male wood mice Apodemus sylvaticus from two contrasting habitats 15 km apart.
    Corp N; Gorman ML; Speakman JR
    J Comp Physiol B; 1997 Apr; 167(3):229-39. PubMed ID: 9151433
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Respiratory cooling in rattlesnakes.
    Borrell BJ; Laduc TJ; Dudley R
    Comp Biochem Physiol A Mol Integr Physiol; 2005 Apr; 140(4):471-6. PubMed ID: 15936707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluating the thermal effects of translocation in a large-bodied pitviper.
    Holding ML; Owen DA; Taylor EN
    J Exp Zool A Ecol Genet Physiol; 2014 Oct; 321(8):442-9. PubMed ID: 24962181
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temperature preference and reproductive fitness of the annual killifish Austrofundulus limnaeus exposed to constant and fluctuating temperatures.
    Podrabsky JE; Clelen D; Crawshaw LI
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2008 Apr; 194(4):385-93. PubMed ID: 18224326
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scaling of CO2 production in the timber rattlesnake (Crotalus horridus), with comments on cost of growth in neonates and comparative patterns.
    Beaupre SJ; Zaidan F
    Physiol Biochem Zool; 2001; 74(5):757-68. PubMed ID: 11517461
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synergistic effect of daily temperature fluctuations and matching light-dark cycle enhances population growth and synchronizes oviposition behavior in a soil arthropod.
    Liefting M; Cosijn J; Ellers J
    J Insect Physiol; 2017 Jan; 96():108-114. PubMed ID: 27751889
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of Constant versus Fluctuating Temperatures on Fitness Indicators of the Aphid
    Tougeron K; Ferrais L; Renard ME; Hance T
    Insects; 2021 Sep; 12(10):. PubMed ID: 34680624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of body mass, meal size, fast length, and temperature on specific dynamic action in the timber rattlesnake (Crotalus horridus).
    Zaidan F; Beaupre SJ
    Physiol Biochem Zool; 2003; 76(4):447-58. PubMed ID: 13130425
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in gene expression associated with acclimation to constant temperatures and fluctuating daily temperatures in an annual killifish Austrofundulus limnaeus.
    Podrabsky JE; Somero GN
    J Exp Biol; 2004 Jun; 207(Pt 13):2237-54. PubMed ID: 15159429
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal preference, thermal resistance, and metabolic rate of juvenile Chinese pond turtles Mauremys reevesii acclimated to different temperatures.
    Xu W; Dang W; Geng J; Lu HL
    J Therm Biol; 2015 Oct; 53():119-24. PubMed ID: 26590464
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic background and thermal regime influence adaptation to novel environment in the seed beetle, Callosobruchus maculatus.
    Ivimey-Cook ER; Piani C; Hung WT; Berg EC
    J Evol Biol; 2024 Jan; 37(1):1-13. PubMed ID: 38285665
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.