BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

476 related articles for article (PubMed ID: 31331639)

  • 1. Tumor Vasculatures: A New Target for Cancer Immunotherapy.
    Liu Z; Wang Y; Huang Y; Kim BYS; Shan H; Wu D; Jiang W
    Trends Pharmacol Sci; 2019 Sep; 40(9):613-623. PubMed ID: 31331639
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Manipulation of the crosstalk between tumor angiogenesis and immunosuppression in the tumor microenvironment: Insight into the combination therapy of anti-angiogenesis and immune checkpoint blockade.
    Zheng W; Qian C; Tang Y; Yang C; Zhou Y; Shen P; Chen W; Yu S; Wei Z; Wang A; Lu Y; Zhao Y
    Front Immunol; 2022; 13():1035323. PubMed ID: 36439137
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vascular Targeting to Increase the Efficiency of Immune Checkpoint Blockade in Cancer.
    Georganaki M; van Hooren L; Dimberg A
    Front Immunol; 2018; 9():3081. PubMed ID: 30627131
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancing cancer immunotherapy using antiangiogenics: opportunities and challenges.
    Fukumura D; Kloepper J; Amoozgar Z; Duda DG; Jain RK
    Nat Rev Clin Oncol; 2018 May; 15(5):325-340. PubMed ID: 29508855
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving immune-vascular crosstalk for cancer immunotherapy.
    Huang Y; Kim BYS; Chan CK; Hahn SM; Weissman IL; Jiang W
    Nat Rev Immunol; 2018 Mar; 18(3):195-203. PubMed ID: 29332937
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The reciprocal function and regulation of tumor vessels and immune cells offers new therapeutic opportunities in cancer.
    Missiaen R; Mazzone M; Bergers G
    Semin Cancer Biol; 2018 Oct; 52(Pt 2):107-116. PubMed ID: 29935312
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combination of anti-angiogenic therapy and immune checkpoint blockade normalizes vascular-immune crosstalk to potentiate cancer immunity.
    Lee WS; Yang H; Chon HJ; Kim C
    Exp Mol Med; 2020 Sep; 52(9):1475-1485. PubMed ID: 32913278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Incorporation of immunotherapies and nanomedicine to better normalize angiogenesis-based cancer treatment.
    Jasim SA; Farber IM; Noraldeen SAM; Bansal P; Alsaab HO; Abdullaev B; Alkhafaji AT; Alawadi AH; Hamzah HF; Mohammed BA
    Microvasc Res; 2024 Jul; 154():104691. PubMed ID: 38703993
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimized antiangiogenic reprogramming of the tumor microenvironment potentiates CD40 immunotherapy.
    Kashyap AS; Schmittnaegel M; Rigamonti N; Pais-Ferreira D; Mueller P; Buchi M; Ooi CH; Kreuzaler M; Hirschmann P; Guichard A; Rieder N; Bill R; Herting F; Kienast Y; Dirnhofer S; Klein C; Hoves S; Ries CH; Corse E; De Palma M; Zippelius A
    Proc Natl Acad Sci U S A; 2020 Jan; 117(1):541-551. PubMed ID: 31889004
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immunotherapeutic Targeting of Tumor-Associated Blood Vessels.
    Fabian KL; Storkus WJ
    Adv Exp Med Biol; 2017; 1036():191-211. PubMed ID: 29275473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tumor Vasculature as an Emerging Pharmacological Target to Promote Anti-Tumor Immunity.
    Tzeng HT; Huang YJ
    Int J Mol Sci; 2023 Feb; 24(5):. PubMed ID: 36901858
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Vascular normalization and cancer immunotherapy].
    Zeng J; Yuan D; Liu H; Song Y
    Zhongguo Fei Ai Za Zhi; 2014 Mar; 17(3):273-6. PubMed ID: 24667268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Normalization of the vasculature for treatment of cancer and other diseases.
    Goel S; Duda DG; Xu L; Munn LL; Boucher Y; Fukumura D; Jain RK
    Physiol Rev; 2011 Jul; 91(3):1071-121. PubMed ID: 21742796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Immune therapy and tumor angiogenesis].
    Takakura N
    Rinsho Ketsueki; 2020; 61(9):1440-1445. PubMed ID: 33162547
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Editorial: Combinatorial Approaches to Enhance Anti-tumor Immunity: Focus on Immune Checkpoint Blockade Therapy.
    Andersson P; Ostheimer C
    Front Immunol; 2019; 10():2083. PubMed ID: 31555290
    [No Abstract]   [Full Text] [Related]  

  • 16. Tumor angiogenesis and vascular normalization: alternative therapeutic targets.
    Viallard C; Larrivée B
    Angiogenesis; 2017 Nov; 20(4):409-426. PubMed ID: 28660302
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anti-angiogenesis: Opening a new window for immunotherapy.
    Guo F; Cui J
    Life Sci; 2020 Oct; 258():118163. PubMed ID: 32738363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inducing vascular normalization: A promising strategy for immunotherapy.
    Luo X; Zou W; Wei Z; Yu S; Zhao Y; Wu Y; Wang A; Lu Y
    Int Immunopharmacol; 2022 Nov; 112():109167. PubMed ID: 36037653
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anti-angiogenesis for cancer revisited: Is there a role for combinations with immunotherapy?
    Ramjiawan RR; Griffioen AW; Duda DG
    Angiogenesis; 2017 May; 20(2):185-204. PubMed ID: 28361267
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Combination of Immune Checkpoint Blockade with Tumor Vessel Normalization as a Promising Therapeutic Strategy for Breast Cancer: An Overview of Preclinical and Clinical Studies.
    Melaiu O; Vanni G; Portarena I; Pistolese CA; Anemona L; Pomella S; Bei R; Buonomo OC; Roselli M; Mauriello A; Barillari G
    Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36834641
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.