BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 31331663)

  • 1. Magnetic resonance imaging based modeling of microvascular perfusion in patients with peripheral artery disease.
    Gimnich OA; Singh J; Bismuth J; Shah DJ; Brunner G
    J Biomech; 2019 Aug; 93():147-158. PubMed ID: 31331663
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetic Resonance Imaging-Derived Microvascular Perfusion Modeling to Assess Peripheral Artery Disease.
    Gimnich OA; Belousova T; Short CM; Taylor AA; Nambi V; Morrisett JD; Ballantyne CM; Bismuth J; Shah DJ; Brunner G
    J Am Heart Assoc; 2023 Feb; 12(3):e027649. PubMed ID: 36688362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Convolutional Neural Networks to Study Contrast-Enhanced Magnetic Resonance Imaging-Based Skeletal Calf Muscle Perfusion in Peripheral Artery Disease.
    Khagi B; Belousova T; Short CM; Taylor AA; Bismuth J; Shah DJ; Brunner G
    Am J Cardiol; 2024 Jun; 220():56-66. PubMed ID: 38580040
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Leg blood flow and skeletal muscle microvascular perfusion responses to submaximal exercise in peripheral arterial disease.
    Meneses AL; Nam MCY; Bailey TG; Magee R; Golledge J; Hellsten Y; Keske MA; Greaves K; Askew CD
    Am J Physiol Heart Circ Physiol; 2018 Nov; 315(5):H1425-H1433. PubMed ID: 30095999
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of skeletal muscle microvascular perfusion of lower extremities by cardiovascular magnetic resonance arterial spin labeling, blood oxygenation level-dependent, and intravoxel incoherent motion techniques.
    Suo S; Zhang L; Tang H; Ni Q; Li S; Mao H; Liu X; He S; Qu J; Lu Q; Xu J
    J Cardiovasc Magn Reson; 2018 Mar; 20(1):18. PubMed ID: 29551091
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reproducibility of rest and exercise stress contrast-enhanced calf perfusion magnetic resonance imaging in peripheral arterial disease.
    Jiji RS; Pollak AW; Epstein FH; Antkowiak PF; Meyer CH; Weltman AL; Lopez D; DiMaria JM; Hunter JR; Christopher JM; Kramer CM
    J Cardiovasc Magn Reson; 2013 Jan; 15(1):14. PubMed ID: 23343398
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calf muscle perfusion as measured with magnetic resonance imaging to assess peripheral arterial disease.
    Brunner G; Bismuth J; Nambi V; Ballantyne CM; Taylor AA; Lumsden AB; Morrisett JD; Shah DJ
    Med Biol Eng Comput; 2016 Nov; 54(11):1667-1681. PubMed ID: 26906279
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arterial spin labeling perfusion cardiovascular magnetic resonance of the calf in peripheral arterial disease: cuff occlusion hyperemia vs exercise.
    Lopez D; Pollak AW; Meyer CH; Epstein FH; Zhao L; Pesch AJ; Jiji R; Kay JR; DiMaria JM; Christopher JM; Kramer CM
    J Cardiovasc Magn Reson; 2015 Feb; 17(1):23. PubMed ID: 25890198
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arterial spin labeling MR imaging reproducibly measures peak-exercise calf muscle perfusion: a study in patients with peripheral arterial disease and healthy volunteers.
    Pollak AW; Meyer CH; Epstein FH; Jiji RS; Hunter JR; Dimaria JM; Christopher JM; Kramer CM
    JACC Cardiovasc Imaging; 2012 Dec; 5(12):1224-30. PubMed ID: 23236972
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relation of Magnetic Resonance Imaging Based Arterial Signal Enhancement to Markers of Peripheral Artery Disease.
    Gimnich OA; Holbrook J; Belousova T; Short CM; Taylor AA; Nambi V; Morrisett JD; Ballantyne CM; Bismuth J; Shah DJ; Brunner G
    Am J Cardiol; 2021 Feb; 140():140-147. PubMed ID: 33144163
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exercise-induced calf muscle hyperemia: quantitative mapping with low-dose dynamic contrast enhanced magnetic resonance imaging.
    Zhang JL; Layec G; Hanrahan C; Conlin CC; Hart C; Hu N; Khor L; Mueller M; Lee VS
    Am J Physiol Heart Circ Physiol; 2019 Jan; 316(1):H201-H211. PubMed ID: 30388024
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Baseline assessment and comparison of arterial anatomy, hyperemic flow, and skeletal muscle perfusion in peripheral artery disease: The Cardiovascular Cell Therapy Research Network "Patients with Intermittent Claudication Injected with ALDH Bright Cells" (CCTRN PACE) study.
    Venkatesh BA; Nauffal V; Noda C; Fujii T; Yang PC; Bettencourt J; Ricketts EP; Murphy M; Leeper NJ; Moyé L; Ebert RF; Muthupillai R; Bluemke DA; Perin EC; Hirsch AT; Lima JA;
    Am Heart J; 2017 Jan; 183():24-34. PubMed ID: 27979038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Limb Perfusion During Exercise Assessed by Contrast Ultrasound Varies According to Symptom Severity in Patients with Peripheral Artery Disease.
    Davidson BP; Hodovan J; Mason OR; Moccetti F; Gupta A; Muller M; Belcik JT; Annex BH; Lindner JR
    J Am Soc Echocardiogr; 2019 Sep; 32(9):1086-1094.e3. PubMed ID: 31235422
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exercise versus vasodilator stress limb perfusion imaging for the assessment of peripheral artery disease.
    Davidson BP; Belcik JT; Landry G; Linden J; Lindner JR
    Echocardiography; 2017 Aug; 34(8):1187-1194. PubMed ID: 28664576
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A machine learning-based approach to identify peripheral artery disease using texture features from contrast-enhanced magnetic resonance imaging.
    Khagi B; Belousova T; Short CM; Taylor A; Nambi V; Ballantyne CM; Bismuth J; Shah DJ; Brunner G
    Magn Reson Imaging; 2024 Feb; 106():31-42. PubMed ID: 38065273
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic contrast-enhanced MRI assessment of hyperemic fractional microvascular blood plasma volume in peripheral arterial disease: initial findings.
    Versluis B; Dremmen MH; Nelemans PJ; Wildberger JE; Schurink GW; Leiner T; Backes WH
    PLoS One; 2012; 7(5):e37756. PubMed ID: 22662212
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An exercise stress test for contrast-enhanced duplex ultrasound assessment of lower limb muscle perfusion in patients with peripheral arterial disease.
    Prior SJ; Chrencik MT; Christensen E; Kundi R; Ryan AS; Addison O; Lal BK
    J Vasc Surg; 2024 Feb; 79(2):397-404. PubMed ID: 37844848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetic resonance imaging based superficial femoral artery velocity measurements in peripheral artery disease.
    Sinharoy A; Reddy N; Lin JK; Nambi V; Yang EY; Kougias P; Taylor AA; Lumsden AB; Ballantyne CM; Morrisett JD; Brunner G
    Magn Reson Imaging; 2022 Nov; 93():128-134. PubMed ID: 35940380
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiparametric assessment of vascular function in peripheral artery disease: dynamic measurement of skeletal muscle perfusion, blood-oxygen-level dependent signal, and venous oxygen saturation.
    Englund EK; Langham MC; Ratcliffe SJ; Fanning MJ; Wehrli FW; Mohler ER; Floyd TF
    Circ Cardiovasc Imaging; 2015 Apr; 8(4):. PubMed ID: 25873722
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Skeletal Muscle Pathology in Peripheral Artery Disease: A Brief Review.
    McDermott MM; Ferrucci L; Gonzalez-Freire M; Kosmac K; Leeuwenburgh C; Peterson CA; Saini S; Sufit R
    Arterioscler Thromb Vasc Biol; 2020 Nov; 40(11):2577-2585. PubMed ID: 32938218
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.