These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 31331892)

  • 21. Learning to sense sparse signals: simultaneous sensing matrix and sparsifying dictionary optimization.
    Duarte-Carvajalino JM; Sapiro G
    IEEE Trans Image Process; 2009 Jul; 18(7):1395-408. PubMed ID: 19497818
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rapid reconstruction of highly undersampled, non-Cartesian real-time cine k-space data using a perceptual complex neural network (PCNN).
    Shen D; Ghosh S; Haji-Valizadeh H; Pathrose A; Schiffers F; Lee DC; Freed BH; Markl M; Cossairt OS; Katsaggelos AK; Kim D
    NMR Biomed; 2021 Jan; 34(1):e4405. PubMed ID: 32875668
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Deep Sensing for Compressive Video Acquisition.
    Yoshida M; Torii A; Okutomi M; Taniguchi RI; Nagahara H; Yagi Y
    Sensors (Basel); 2023 Aug; 23(17):. PubMed ID: 37687990
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Content-Aware Scalable Deep Compressed Sensing.
    Chen B; Zhang J
    IEEE Trans Image Process; 2022; 31():5412-5426. PubMed ID: 35947572
    [TBL] [Abstract][Full Text] [Related]  

  • 25. AutoBCS: Block-Based Image Compressive Sensing With Data-Driven Acquisition and Noniterative Reconstruction.
    Gan H; Gao Y; Liu C; Chen H; Zhang T; Liu F
    IEEE Trans Cybern; 2023 Apr; 53(4):2558-2571. PubMed ID: 34851846
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Deep neural network inspired by iterative shrinkage-thresholding algorithm with data consistency (NISTAD) for fast Undersampled MRI reconstruction.
    Qiu W; Li D; Jin X; Liu F; Sun B
    Magn Reson Imaging; 2020 Jul; 70():134-144. PubMed ID: 32353530
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Compressed Sensing MRI Reconstruction Using a Generative Adversarial Network With a Cyclic Loss.
    Quan TM; Nguyen-Duc T; Jeong WK
    IEEE Trans Med Imaging; 2018 Jun; 37(6):1488-1497. PubMed ID: 29870376
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Deep-learning-based single-photon-counting compressive imaging via jointly trained subpixel convolution sampling.
    Li WC; Yan QR; Guan YQ; Yang ST; Peng C; Fang ZY
    Appl Opt; 2020 Aug; 59(23):6828-6837. PubMed ID: 32788773
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Research on Image Reconstruction of Compressed Sensing Based on a Multi-Feature Residual Network.
    Nan R; Sun G; Wang Z; Ren X
    Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32731604
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Real-Time and Robust Neural Network Model for Low-Measurement-Rate Compressed-Sensing Image Reconstruction.
    Chen P; Song H; Zeng Y; Guo X; Tang C
    Entropy (Basel); 2023 Dec; 25(12):. PubMed ID: 38136528
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Application of 1-D discrete wavelet transform based compressed sensing matrices for speech compression.
    Parkale YV; Nalbalwar SL
    Springerplus; 2016; 5(1):2048. PubMed ID: 27995025
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fuzzy Adaptive-Sampling Block Compressed Sensing for Wireless Multimedia Sensor Networks.
    Heng S; Aimtongkham P; Vo VN; Nguyen TG; So-In C
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33142673
    [No Abstract]   [Full Text] [Related]  

  • 33. COAST: COntrollable Arbitrary-Sampling NeTwork for Compressive Sensing.
    You D; Zhang J; Xie J; Chen B; Ma S
    IEEE Trans Image Process; 2021; 30():6066-6080. PubMed ID: 34185643
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Single photon counting compressive imaging using a generative model optimized via sampling and transfer learning.
    Gao W; Yan QR; Zhou HL; Yang ST; Fang ZY; Wang YH
    Opt Express; 2021 Feb; 29(4):5552-5566. PubMed ID: 33726090
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Invertible Privacy-Preserving Adversarial Reconstruction for Image Compressed Sensing.
    Xiao D; Li Y; Li M
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050636
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Deep Convolutional Encoder-Decoder algorithm for MRI brain reconstruction.
    Njeh I; Mzoughi H; Ben Slima M; Ben Hamida A; Mhiri C; Ben Mahfoudh K
    Med Biol Eng Comput; 2021 Jan; 59(1):85-106. PubMed ID: 33231848
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Green Compressive Sampling Reconstruction in IoT Networks.
    Colonnese S; Biagi M; Cattai T; Cusani R; De Vico Fallani F; Scarano G
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30127298
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Computationally efficient deep neural network for computed tomography image reconstruction.
    Wu D; Kim K; Li Q
    Med Phys; 2019 Nov; 46(11):4763-4776. PubMed ID: 31132144
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Image Super-Resolution Using Deep Convolutional Networks.
    Dong C; Loy CC; He K; Tang X
    IEEE Trans Pattern Anal Mach Intell; 2016 Feb; 38(2):295-307. PubMed ID: 26761735
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Efficient Near-Field Radiofrequency Imaging of Impact Damage on CFRP Materials with Learning-Based Compressed Sensing.
    Song H; Wang Z; Zeng Y; Guo X; Tang C
    Materials (Basel); 2022 Aug; 15(17):. PubMed ID: 36079259
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.