These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 31331899)

  • 1. LiSSA: Localized Stochastic Sensitive Autoencoders.
    Wang T; Ng WWY; Pelillo M; Kwong S
    IEEE Trans Cybern; 2021 May; 51(5):2748-2760. PubMed ID: 31331899
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SBHA: Sensitive Binary Hashing Autoencoder for Image Retrieval.
    Wang T; Lu S; Zhang J; Liu X; Tian X; Ng WWY; Chen WN
    IEEE Trans Cybern; 2024 Jul; 54(7):3954-3967. PubMed ID: 37167035
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radial Basis Function Neural Network with Localized Stochastic-Sensitive Autoencoder for Home-Based Activity Recognition.
    Ng WWY; Xu S; Wang T; Zhang S; Nugent C
    Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32182668
    [TBL] [Abstract][Full Text] [Related]  

  • 4. BASS: Broad Network Based on Localized Stochastic Sensitivity.
    Wang T; Zhang M; Zhang J; Ng WWY; Chen CLP
    IEEE Trans Neural Netw Learn Syst; 2024 Feb; 35(2):1681-1695. PubMed ID: 35830397
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MLPNN Training via a Multiobjective Optimization of Training Error and Stochastic Sensitivity.
    Yeung DS; Li JC; Ng WW; Chan PP
    IEEE Trans Neural Netw Learn Syst; 2016 May; 27(5):978-92. PubMed ID: 26054075
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ARAE: Adversarially robust training of autoencoders improves novelty detection.
    Salehi M; Arya A; Pajoum B; Otoofi M; Shaeiri A; Rohban MH; Rabiee HR
    Neural Netw; 2021 Dec; 144():726-736. PubMed ID: 34678569
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Localized generalization error model and its application to architecture selection for radial basis function neural network.
    Yeung DS; Ng WW; Wang D; Tsang EC; Wang XZ
    IEEE Trans Neural Netw; 2007 Sep; 18(5):1294-305. PubMed ID: 18220181
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving domain generalization by hybrid domain attention and localized maximum sensitivity.
    Ng WWY; Zhang Q; Zhong C; Zhang J
    Neural Netw; 2024 Mar; 171():320-331. PubMed ID: 38113717
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Denoising Adversarial Autoencoders.
    Creswell A; Bharath AA
    IEEE Trans Neural Netw Learn Syst; 2019 Apr; 30(4):968-984. PubMed ID: 30130236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discriminative and Robust Autoencoders for Unsupervised Feature Selection.
    Ling Y; Nie F; Yu W; Li X
    IEEE Trans Neural Netw Learn Syst; 2023 Dec; PP():. PubMed ID: 38090873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hierarchical One-Class Classifier With Within-Class Scatter-Based Autoencoders.
    Wang T; Cao J; Lai X; Wu QMJ
    IEEE Trans Neural Netw Learn Syst; 2021 Aug; 32(8):3770-3776. PubMed ID: 32822309
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RoS-KD: A Robust Stochastic Knowledge Distillation Approach for Noisy Medical Imaging.
    Jaiswal A; Ashutosh K; Rousseau JF; Peng Y; Wang Z; Ding Y
    Proc IEEE Int Conf Data Min; 2022; 2022():981-986. PubMed ID: 37038389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the benefits of representation regularization in invariance based domain generalization.
    Shui C; Wang B; Gagné C
    Mach Learn; 2022; 111(3):895-915. PubMed ID: 35510180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Manifold Learning Perspective on Representation Learning: Learning Decoder and Representations without an Encoder.
    Schuster V; Krogh A
    Entropy (Basel); 2021 Oct; 23(11):. PubMed ID: 34828101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental Realization of a Quantum Autoencoder: The Compression of Qutrits via Machine Learning.
    Pepper A; Tischler N; Pryde GJ
    Phys Rev Lett; 2019 Feb; 122(6):060501. PubMed ID: 30822053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unsupervised abnormality detection through mixed structure regularization (MSR) in deep sparse autoencoders.
    Freiman M; Manjeshwar R; Goshen L
    Med Phys; 2019 May; 46(5):2223-2231. PubMed ID: 30821364
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dimension Reduction With Extreme Learning Machine.
    Kasun LL; Yang Y; Huang GB; Zhang Z
    IEEE Trans Image Process; 2016 Aug; 25(8):3906-18. PubMed ID: 27214902
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Learning Neural Representations for Network Anomaly Detection.
    Cao VL; Nicolau M; McDermott J
    IEEE Trans Cybern; 2019 Aug; 49(8):3074-3087. PubMed ID: 29994493
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interpretable Autoencoders Trained on Single Cell Sequencing Data Can Transfer Directly to Data from Unseen Tissues.
    Walbech JS; Kinalis S; Winther O; Nielsen FC; Bagger FO
    Cells; 2021 Dec; 11(1):. PubMed ID: 35011647
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neuron Coverage-Guided Domain Generalization.
    Tian CX; Li H; Xie X; Liu Y; Wang S
    IEEE Trans Pattern Anal Mach Intell; 2023 Jan; 45(1):1302-1311. PubMed ID: 35259096
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.