These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 31331899)

  • 21. Application of deep autoencoder as an one-class classifier for unsupervised network intrusion detection: a comparative evaluation.
    Vaiyapuri T; Binbusayyis A
    PeerJ Comput Sci; 2020; 6():e327. PubMed ID: 33816977
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Open Set Audio Classification Using Autoencoders Trained on Few Data.
    Naranjo-Alcazar J; Perez-Castanos S; Zuccarello P; Antonacci F; Cobos M
    Sensors (Basel); 2020 Jul; 20(13):. PubMed ID: 32635378
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Robust and Rotation-Equivariant Contrastive Learning.
    Bai G; Xi W; Hong X; Liu X; Yue Y; Zhao S
    IEEE Trans Neural Netw Learn Syst; 2023 Feb; PP():. PubMed ID: 37027775
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Graph Regularized Auto-Encoders for Image Representation.
    Yiyi Liao ; Yue Wang ; Yong Liu
    IEEE Trans Image Process; 2017 Jun; 26(6):2839-2852. PubMed ID: 28113587
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structured AutoEncoders for Subspace Clustering.
    Peng X; Feng J; Xiao S; Yau WY; Zhou JT; Yang S
    IEEE Trans Image Process; 2018 Jun; ():. PubMed ID: 29994115
    [TBL] [Abstract][Full Text] [Related]  

  • 26. VMAN: A Virtual Mainstay Alignment Network for Transductive Zero-Shot Learning.
    Xie GS; Zhang XY; Yao Y; Zhang Z; Zhao F; Shao L
    IEEE Trans Image Process; 2021; 30():4316-4329. PubMed ID: 33835918
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Adversarially-Regularized Mixed Effects Deep Learning (ARMED) Models Improve Interpretability, Performance, and Generalization on Clustered (non-iid) Data.
    Nguyen KP; Treacher AH; Montillo AA
    IEEE Trans Pattern Anal Mach Intell; 2023 Jul; 45(7):8081-8093. PubMed ID: 37018678
    [TBL] [Abstract][Full Text] [Related]  

  • 28. SRSC: Selective, Robust, and Supervised Constrained Feature Representation for Image Classification.
    Xie GS; Zhang Z; Liu L; Zhu F; Zhang XY; Shao L; Li X
    IEEE Trans Neural Netw Learn Syst; 2020 Oct; 31(10):4290-4302. PubMed ID: 31870993
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Diversified Sensitivity-Based Undersampling for Imbalance Classification Problems.
    Ng WW; Hu J; Yeung DS; Yin S; Roli F
    IEEE Trans Cybern; 2015 Nov; 45(11):2402-12. PubMed ID: 25474818
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Sparse Denoising Autoencoder Application in Identification of Counterfeit Pharmaceutical].
    Yang HH; Luo ZC; Jiang SJ; Zhang XB; Yin LH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Sep; 36(9):2774-9. PubMed ID: 30084593
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Unsupervised feature selection via latent representation learning and manifold regularization.
    Tang C; Bian M; Liu X; Li M; Zhou H; Wang P; Yin H
    Neural Netw; 2019 Sep; 117():163-178. PubMed ID: 31170576
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Algorithmic Stability and Generalization of an Unsupervised Feature Selection Algorithm.
    Wu X; Cheng Q
    Adv Neural Inf Process Syst; 2021 Dec; 34():19860-19875. PubMed ID: 36187051
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Visual Recognition by Learning From Web Data via Weakly Supervised Domain Generalization.
    Niu L; Li W; Xu D; Cai J
    IEEE Trans Neural Netw Learn Syst; 2017 Sep; 28(9):1985-1999. PubMed ID: 27254873
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Abnormal Detection in Big Data Video with an Improved Autoencoder.
    Bian Y; Tang X
    Comput Intell Neurosci; 2021; 2021():9861533. PubMed ID: 34925499
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Deep Manifold Preserving Autoencoder for Classifying Breast Cancer Histopathological Images.
    Feng Y; Zhang L; Mo J
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(1):91-101. PubMed ID: 30040652
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Variance Minimization Criterion to Feature Selection Using Laplacian Regularization.
    He X; Ji M; Zhang C; Bao H
    IEEE Trans Pattern Anal Mach Intell; 2011 Oct; 33(10):2013-25. PubMed ID: 21383399
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Staining Invariant Features for Improving Generalization of Deep Convolutional Neural Networks in Computational Pathology.
    Otálora S; Atzori M; Andrearczyk V; Khan A; Müller H
    Front Bioeng Biotechnol; 2019; 7():198. PubMed ID: 31508414
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhanced robustness of myoelectric pattern recognition to across-day variation through invariant feature extraction.
    Liu J; Zhang D; Sheng X; Zhu X
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():7262-5. PubMed ID: 26737968
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Trading variance reduction with unbiasedness: the regularized subspace information criterion for robust model selection in kernel regression.
    Sugiyama M; Kawanabe M; Müller KR
    Neural Comput; 2004 May; 16(5):1077-104. PubMed ID: 15070511
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Laplacian Regularized D-optimal Design for active learning and its application to image retrieval.
    He X
    IEEE Trans Image Process; 2010 Jan; 19(1):254-63. PubMed ID: 19758863
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.